
This is a combination of talk and primer covering:
 - What is Serve Stale?
 - A tutorial on how to configure and use it
 - Things you need to be aware of if you’re using it
 - And a final question to you all

I’m Cathy Almond, 
I work for ISC
We make, maintain and distribute Open Source BIND.
But with a bit of help from my friends, I’m going to tell you about Serve Stale in
Unbound, Knot Resolver and PowerDNS Recursor too



Most	Internet	users	rely	on	DNS	without	even	knowing	how	important	it	is
	-	I	chose	my	T-shirt	today	specifically	for	this	talk	by	the	way!

If	DNS	resoluAon	for	clients	wanAng	access	to	services	doesn’t	work,	then	even	if	those	services	
are	up	and	running,	they’re	not	accessible

DNS	is	important!

But	things	can	go	wrong	for	authoritaAve	DNS	servers
	-	physical	disasters
	-	DDoS
	-	People	make	configuraAon	and	operaAon	mistakes

And	then	then	DNS	resolvers	can’t	look-up	what	they	need	to	to	provide	query	responses	to	their	
clients.

It	started	with	a	big	disaster	back	in	2016	
	-	Successful	DDoS	against	DynDB
	-	Many	popular	sites	effecAvely	‘down’	because	Resolvers	couldn’t	reach	the	authoritaAve	servers
	-	Management	clamoured	for	a	miAgaAon	for	this	situaAon

These	resolvers	-	WHAT	IF	they	already	had	the	answers	already-	DNS	resolvers	have	caches	

Resolvers	are	not	supposed	to	use	OLD	answers	-	the	DNS	protocol	includes	the	Time	To	Live	(think
of	it	as	the	use-by	date	on	the	food	you	buy).

In	fact,	think	of	your	resolver	as	a	refrigerator	and	the	records	from	authoritaAve	servers	as	the	
food	you	bought	from	the	grocery	story	…

But	slightly	old	answers	are	very	likely	(most	of	the	Ame)	going	to	be	correct	and	beXer	than	no	
answers	at	all,	if	something	has	Gone	Wrong.

So	why	not	use	them	as	the	answer	of	last	resort,	and	keep	the	services	they	point	to	from	
becoming	inaccessible?

If	you’re	hungry,	stale	bread	is	beXer	than	no	bread	at	all…

And	so,	Serve	Stale	for	DNS	Resolvers	was	born…

There’s	an	Internet	Standard	(RFC)	on	this	-	wriXen	a\er	several	implementaAons	already	existed.

It’s	actually	very	well	put	together	and	easy	to	read	and	understand	-	and	I’ll	cover	the	general	
principles	in	the	next	couple	of	slides.



Resolvers	have	caches

Caches	already	have	retenAon	and	evicAon	strategies	for	their	content	
	-	Ideally	keep	popular	content	available	all	the	Ame	if	possible
	-	Include	TTL	and	‘last	accessed’	informaAon
	-	Maybe	prefetch	to	refresh	RRsets	before	they	expire?

BUT	now	we’re	planning	to	potenAally	use	stale	RRsets	as	a	backup
	-	Should	we	therefore	keep	content	for	longer?
	-	How	much	longer?
	-	What’s	this	going	to	do	for	cache	memory	consumpAon	by	the	way?

AND	how	to	decide	when	to	use	stale	RRsets	-	how	long	to	keep	the	client	waiAng?

DO	you	try	to	refresh	those	RRsets	on	every	client	query?

And	really	-	when	is	the	old	stuff	JUST	TOO	OLD	to	use?

And	…	psst!	…	should	you	tell	the	client	that	you’ve	given	them	old	answers?



RFC	8767	recommends	that	Resolvers	should	have	these	Amers	…

Actually,	apart	from	the	last	one,	they	would	have	had	them	all	anyway	in	some	form	or	other

-	You	don’t	want	your	clients	to	have	to	wait	too	long	(even	though	they	usually	retry	their	queries)
-	You	don’t	want	your	resolver	to	be	doing	more	work	that	it	needs	to

So	the	pracAcal	difference	with	serve-stale	enabled	is	that	the	client	(if	possible)	will	get	old	
content	in	a	query	response	instead	of	SERVFAIL

SERVE	STALE	instead	of	SERVFAIL	??

Tempered	of	course	by	not	serving	content	so	old	that	it’s	going	to	give	the	clients	virtual	food	
poisoning!



Oooh	-	some	new	things	to	think	about	we	didn’t	touch	upon	before
-	You’re	giving	your	client	old	expired	stuff	-	already	past	its	TTL.		How	long	do	you	want	the	client	
to	use	it	for	before	coming	back	to	ask	you	again?

-	Some	authoritaAve	servers	send	‘one	Ame	use	only’	RRsets	-	what	should	you	do	with	those?

(ASIDE:	AuthoritaAve	and	Resolver	operators	alike	pay	aXenAon	to	the	received	TTL=0	scenario	
later	-	whether	you	like	it	or	not,	there	ARE	resolver	handling	differences!)

-	What	is	a	failure	anyway	(not	all	auth	problems	are	down	to	physical	disasters	and	deliberate	
aXack	-	someAmes	people	just	mess	things	up…)



This	slide	speaks	for	itself:

1.	If	you	enable	Serve	Stale,	are	you	going	to	run	into	memory	consumpAon	problems?		Need	to	
plan	ahead?

PARTICULARLY	on	the	memory	consumpAon	thing	-	bear	in	mind	that	it’s	not	just	the	popular	
content	that	is	going	to	be	retained	for	longer,	but	the	one-Ame-use	content	too,	and	this	could	
cause	cache	management	issues	in	some	implementaAons.

2.	How	do	you	want	things	to	be	for	your	clients/users?



Disclaimer:	I	know	a	lot	about	BIND	-	obviously!

Hopefully	I	won’t	make	too	many	mistakes	when	explaining	how	the	other	three	implementaAons	
work!

(But	they	did	all	approve	the	slides	-	so	use	those	a\erwards	as	the	source	of	truth	rather	than	
what	I	say!)

====

NOW,	upfront	I	am	going	to	say	‘there	is	a	lot	of	data	in	the	slides	that	follow’

I’m	NOT	going	to	explain	all	the	opAons	and	things	to	think	about	down	to	the	Aniest	detail

The	approach	I’ve	taken,	is	that	the	slideset	is	your	PRACTICAL	TAKEAWAY,	to	use	later.

So	instead	of	bullet	points	on	the	slides	that	the	speaker	elaborates	upon…
I’m	elaboraAng	on	the	slides,	but	giving	you	bullet	points	in	my	talk	over!

So	I	recommend	that	you	listen	rather	than	read	(unless	you	can	mulA-task	effecAvely)



BIND	has	two	separate	things	to	enable
-	Retaining	of	stale	content	(in	case	it’s	needed)
-	AcAvaAng	the	processes	to	use	stale	content	if	it	can’t	be	refreshed

Neither	are	enabled	by	default

It’s	possible	to	enable	stale	cache	and	then	turn	on	stale	answers	dynamically	a\erwards

How	would	you	know	you	needed	to	do	this	though	-	and	probably	by	the	Ame	you	realised	you	
needed	to,	there	could	be	a	lot	of	unhappiness	abounding?



You’ve	got	the	knobs	you	need	(if	you	want	them)	for	tweaking	the	standard	client	experience	-	but
the	defaults	are	sane	and	most	users	of	Serve	Stale	won’t	need	to	adjust	them.

And	then	there’s	an	interesAng	knob:		stale-answer-client-Ameout

Oh	we	have	had	some	fun	with	this	one	…	

The	original	idea	was	that	you	could	decide	how	long	the	client	had	to	wait	before	gejng	a	stale	
answer	(but	sAll	leaving	the	cache	refresh	to	complete	as	normal	-	successfully	or	otherwise).

Where	we’re	at	now	is	that	you	either	just	have	to	let	the	client	wait	as	usual	unAl	we	replace	
SERVFAIL	with	Serve	Stale	

OR

If	there’s	a	stale	cache	hit,	then	serve	that	immediately	and	leave	the	refresh	to	do	its	thing	
a\erwards.

Would	you	want	to	do	that?		(More	on	that	at	the	end	(BIND	is	not	the	only	implementaAon	that	
allows	this)	…



The	biggest	takeaway	point	is	the	cache	consumpAon	one.		BIND’s	rouAne	housekeeping	of	expired
content	is	less	processing-intensive	than	the	memory-based	mechanism	that	is	triggered	when	
max-cache-size	is	reached.

Monitor	and	provision	more	memory/cache	and/or	reduce	how	long	you	retain	stale	content	for	if	
you	need	to	and	you	will	be	happier…

And	yes,	we	do	do	EDE.		Both	EDEs	-	except	that	we	decided	later	not	to	apply	Serve	Stale	to	
NXDOMAINs,	so	you’ll	never	see	EDE	19	in	current	BIND	with	Serve	Stale	enabled.



The	original	default	behaviour	with	“serve-expired:	yes”	AND	NOTHING	ELSE	CONFIGURED	is	that	
all	content	in	cache	is	eligible	to	be	served	stale	if	needed.

This	works	because	Unbound	has	no	expired-TTL	cleaning	mechanism,	so	as	long	as	there	is	sAll	
room	in	cache,	the	content	remains	available.

AlternaAvely,	you	can	say	‘only	use	these	old	RRsets	unAl	a	given	limit	and	never	again	therea\er

And	on	top	of	that,	you	can	also	opt	to	reset	that	‘only	for	so	long’	Amer	-	but	that	requires	a	full	
aXempt	to	refresh	before	the	old	content	gets	sent	to	the	client.



Again,	and	similar	to	BIND,	in	Unbound	you’ve	got	the	knobs	you	need	(if	you	want	them)	for	
tweaking	the	standard	client	experience	-	but	the	defaults	are	sane	and	most	users	of	Serve	Stale	
won’t	need	to	adjust	them.

…	except	possibly	serve-expired-client-Ameout	

This	works	similarly	to	the	BIND	opAon	stale-answer-client-Ameout	-	it’s	about	how	long	to	wait	for
refresh	recursion	to	complete	for	the	first	Ame,	before	opAng	to	use	an	exisAng	stale	RRset	for	the	
reply	to	the	client.		But	in	Unbound	you	can	make	more	use	of	it,	as	well	as	opAng	to	serve	stale	
first	and	then	refresh	a\erwards.

Also	note	that	you	will	need	to	enable	both	EDE	and	the	serving	of	EDE	when	providing	stale	
answers	to	clients.



The	takeaway	from	this	slide	is	that	you	shouldn’t	need	to	worry	overly	about	cache	consumpAon	
in	Unbound	if	you	enable	stale	answers	-	it’s	not	going	to	change	cache	consumpAon.		Cache	
content	that	was	least	recently	used	will	sAll	be	evicted	once	cache	memory	limits	have	been	
reached.

Also	note	that	back-end	cache	DB	feature	-	I	did	not	dig	into	this	and	I	leave	its	funcAonality	for	the
reader	to	research!



What	this	means	is	that	a\er	the	first	‘serve-expired-client-Ameout’	and	then	use	of	stale	RRsets,	
those	same	stale	RRsets	will	conAnue	to	be	used	immediately	for	subsequent	client	queries	unAl	5	
seconds	have	passed,	at	which	point,	the	next	client	query	will	cause	another	refresh	aXempt	to	be
iniAated.

And	‘serve-expired-Xl-reset’	is	complicated.		What	it	essenAally	means	is	that	IF	you	decide	to	set	
the	limit	on	‘this	stale	content	is	so	stale	that	it	would	now	be	poisonous	if	used’	(serve-expired-Xl)
instead	of	leaving	all	stale	content	eligible	unAl	it’s	evicted	from	cache,	that	you	DO	have	the	
possibility	of	using	it	in	desperaAon.		HOWEVER,	a	thorough	aXempt	to	refresh	it	will	take	place	
first	(serve-expired-client-Ameout	does	NOT	apply	here).		But	at	least	there	is	the	possibility	of	
‘answers	of	last	resort’	-	should	you	want	them?



Knot	Resolver	has	a	simplisAc	approach	to	Serve	Stale,	with	few	opAons.		Basically,	just	enable	it	
and	it’s	‘on’!

This	opAon	is	not	specifically	for	Serve	Stale	-	it	is	about	sejng	Ameouts	during	recursion	anyway.		
If	“serve-stale:	true”	had	not	been	set,	then	the	client	would	receive	SERVFAIL	instead	of	stale	
content.

You	probably	don’t	want	to	adjust	this.



Knot	Resolver’s	cache	management	strategy	is	similar	to	Unbound’s	-	so	enabling	Serve	Stale	isn’t	
going	to	change	much	about	cache	consumpAon	or	cache	composiAon.

As	noted	before,	there’s	not	much	that	you	can	tweak	in	the	Knot	Resolver	configuraAon	to	change
Serve	Stale	behaviour,	but	you	could	modify	some	Amers	in	the	lua	module	instead.

But	please	note	one	BIG	DIFFERENCE	in	relaAon	to	TTL=0	content	-	Knot	resolver	already	defaults	
to	overriding	the	cache	TTL	on	RRsets	received	with	TTL	<	5s.		These	RRsets	are	added	to	cache	
regardless	-	and	they	will	sAll	be	added	to	cache	if	this	override	is	disabled	using	cache/Xl-min.		
There	is	nothing	in	Knot	Resolver’s	Serve	Stale	handing	to	exempt	‘one	Ame	use’	TTL=0	RRsets	
from	use	when	stale,	if	they	cannot	be	refreshed.



PowerDNS	Recursor	has	taken	a	slightly	different	approach	to	implemenAng	Serve	Stale.

Note	that	all	implementaAons	have	to	consider:
⁃ What	TTL	to	put	on	stale	answers	served	to	clients
⁃ How	long	to	conAnue	to	use	stale	RRsets	from	cache	before	aXempAng	to	refresh	them	

again

PowerDNS	Recursor	handles	this	when	it	‘revives’	stale	content	by	giving	a	new	TTL	of	30s	in	cache,
which	then	‘counts	down’	in	the	same	way	as	the	originally	received	TTL	from	the	authoritaAve	
servers	did	-	a\er	which	it	can’t	be	served	again	without	aXempAng	to	refresh	it.

There	is	also	a	‘count’	that	you	can	configured	-	which	is	how	many	Ames	this	‘add	another	30s	TTL’
can	be	allowed	to	happen.

Ah	but	(you	might	say),	“what	if	the	RRset	is	only	queried	once	every	5	minutes,	does	that	mean	it	
can	survive	in	cache	to	be	reused	much	longer	than	an	RRset	that	is	queried	every	second?”		I	
asked.		Apparently	not	-	the	<count>	and	calculaAon	is	done	on	the	basis	that	the	refresh	aXempt	
was	done	a\er	each	30s,	so	old	content	that	is	infrequently	queried	doesn’t	get	reused	for	longer	
than	popular	content.

Also	note	that	the	30s	TTL	used	when	‘reviving’	stale	content	might	not	be	30s	if	the	original	
authoritaAve	TTL	was	shorter	than	30s.		(But	the	calculaAons	on	how	long	this	content	is	available	
are	sAll	done	on	<count>	x	30s).



PowerDNS	Recursor	is	akin	to	BIND	in	that	there	are	two	cache	evicAon	strategies,	one	based	on	
TTL	(content	expiry)	and	the	other	on	reaching	cache	memory	limits,	so	you	will	need	to	think	
about	cache	content	and	cache	memory	consumpAon	if	you	enable	Serve	Stale.

And	coming	soon	-	EDE	opAons.



If	you’re	using	something	other	than	the	DNS	resolver	implementaAons	I	covered	then	please	ask	
your	provider	for	advice	on	whether	or	not	they	provided	this	feature	and	if	they	do,	how	it	works	
and	what	configurable	opAons	are	available.



Please	refer	to	the	documentaAon	for	logging	and	staAsAcs	-	and	also	take	a	look	at	both	of	them	if
you	enable	Serve	Stale	in	your	environment	.		Is	it	being	triggered?		Is	it	helping	you?

There	are	a	lot	of	nuances	and	edge	scenarios	that	I	didn’t	dig	into	(well,	I	dug	into	some	of	them	
while	preparing	this	talk,	mainly	to	make	sure	I	understood	the	opAons	correctly,	but	also	because	
I	was	fascinated	by	how	the	underlying	resolver	architecture	drove	the	Serve	Stale	implementaAon
choices	made	by	the	developers).

If	you	have	any	specific	“what	if…?”	quesAons,	then	I	would	encourage	you	to	ask	your	so\ware	
provider	directly.



I	asked	the	quesAons	above	at	the	end	of	my	talk.		Please	watch	the	recording	if	you	want	to	hear	
the	discussion,	but	essenAally:
⁃ Several	operators	confirmed	my	hypothesis	that	it	does	get	triggered,	but	on	a	small	scale	

(“smoothing	over	the	cracks…”)
⁃ No-one	has	yet	seen	it	‘save	the	day’	on	a	big	DNS	authoritaAve	services	outage
⁃ One	hypothesis	on	“smoothing	over	the	cracks”	is	that	the	cracks	are	BGP	and	other	rouAng	

‘flaps’.

So	the	conclusion	we	came	to,	is	that	this	feature	IS	genuinely	useful,	but	not	a	knight	in	shining	
armour	riding	in	to	save	the	day	-	more	it’s	a	series	of	small	bandages	being	applied	just	to	hold	
things	together	from	Ame	to	Ame	on	an	ad-hoc	basis	to	improve	the	‘client	experience’.

(We	didn’t	touch	on	‘serve	stale	content	first,	refresh	a\erwards’	–	which	sounds	tempAng	if	you	
are	being	measured	on	Ame	to	respond	to	client	queries	–	but	do	you	really	want	to	serve	a	stale	
answer	when	there	may	be	a	different	answer	available	from	the	authoritaAve	servers	once	that	
refresh	has	completed?).






