Thinking about Serve Stale

Cathy Almond
2025-02-06
https://www.isc.org

All content © Internet Systems Consortium, Inc.

A

This is a combination of talk and primer covering:
- What is Serve Stale?

- A tutorial on how to configure and use it

- Things you need to be aware of if you’re using it
- And a final question to you all

I’m Cathy Almond,

| work for ISC

We make, maintain and distribute Open Source BIND.

But with a bit of help from my friends, I’'m going to tell you about Serve Stale in
Unbound, Knot Resolver and PowerDNS Recursor too

What is Serve Stale anyway?

DNS Authoritative Servers
Serving Stale Data to Improve DNS Resiliency

DNS Resolver ' @ g %
* w > w
1 Butlhave \w
- \

,‘ an old
@ BBset'

Web services

Web services?

“%
- \ﬁ@f

-

Not Available!

Most Internet users rely on DNS without even knowing how important it is
- | chose my T-shirt today specifically for this talk by the way!

If DNS resolution for clients wanting access to services doesn’t work, then even if those services
are up and running, they’re not accessible

DNS is important!

But things can go wrong for authoritative DNS servers
- physical disasters

- DDoS

- People make configuration and operation mistakes

And then then DNS resolvers can’t look-up what they need to to provide query responses to their
clients.

It started with a big disaster back in 2016

- Successful DDoS against DynDB

- Many popular sites effectively ‘down’ because Resolvers couldn’t reach the authoritative servers
- Management clamoured for a mitigation for this situation

These resolvers - WHAT IF they already had the answers already- DNS resolvers have caches

Resolvers are not supposed to use OLD answers - the DNS protocol includes the Time To Live (think
of it as the use-by date on the food you buy).

In fact, think of your resolver as a refrigerator and the records from authoritative servers as the
food you bought from the grocery story ...

But slightly old answers are very likely (most of the time) going to be correct and better than no
answers at all, if something has Gone Wrong.

So why not use them as the answer of last resort, and keep the services they point to from
becoming inaccessible?

If you’re hungry, stale bread is better than no bread at all...
And so, Serve Stale for DNS Resolvers was born...
There’s an Internet Standard (RFC) on this - written after several implementations already existed.

It’s actually very well put together and easy to read and understand - and I'll cover the general
principles in the next couple of slides.

How might this work?

*How long do you want to keep ‘stale’ cache content?

*How long do you keep a client waiting before providing
a stale answer?

*How often do you try to refresh stale content?
*Should you give up eventually and stop serving stale

RRsets?

*Should you indicate to the client that the answer is old
data?

g@ All content © Internet Systems Consortium, Inc.

Resolvers have caches

Caches already have retention and eviction strategies for their content
- Ideally keep popular content available all the time if possible

- Include TTL and ‘last accessed’ information

- Maybe prefetch to refresh RRsets before they expire?

BUT now we’re planning to potentially use stale RRsets as a backup

- Should we therefore keep content for longer?

- How much longer?

- What'’s this going to do for cache memory consumption by the way?

AND how to decide when to use stale RRsets - how long to keep the client waiting?
DO you try to refresh those RRsets on every client query?

And really - when is the old stuff JUST TOO OLD to use?

And ... psst! ... should you tell the client that you’ve given them old answers?

RFC 8767 says:

Four notable timers drive considerations for the use of stale data:

* A client response timer, which is the maximum amount of time a
recursive resolver should allow between the receipt of a resolution
request and sending its response.

* A query resolution timer, which caps the total amount of time a
recursive resolver spends processing the query.

* A failure recheck timer, which limits the frequency at which a
failed lookup will be attempted again.

* A maximum stale timer, which caps the amount of time that
records will be kept past their expiration.

\Y‘ All content © Internet Systems Consortium, Inc. 4
N

RFC 8767 recommends that Resolvers should have these timers ...
Actually, apart from the last one, they would have had them all anyway in some form or other

- You don’t want your clients to have to wait too long (even though they usually retry their queries)
- You don’t want your resolver to be doing more work that it needs to

So the practical difference with serve-stale enabled is that the client (if possible) will get old
content in a query response instead of SERVFAIL

SERVE STALE instead of SERVFAIL ??

Tempered of course by not serving content so old that it’s going to give the clients virtual food
poisoning!

RFC 8767 also talks about:

-Should you ever serve stale RRsets that were originally
received with TTL=0 (‘don’t cache’)?

* Also use stale content in-path to getting the answers for
the client query (such as NS records and addresses?)

*Does receipt of a non-authoritative error (e.g. FORMERR,
SERVFAIL, REFUSED) count as a failed refresh?

*Can you signal that stale answers have been provided

\Y‘ All content © Internet Systems Consortium, Inc. 5
N

Oooh - some new things to think about we didn’t touch upon before
- You're giving your client old expired stuff - already past its TTL. How long do you want the client

to use it for before coming back to ask you again?

- Some authoritative servers send ‘one time use only’ RRsets - what should you do with those?

(ASIDE: Authoritative and Resolver operators alike pay attention to the received TTL=0 scenario
later - whether you like it or not, there ARE resolver handling differences!)

- What is a failure anyway (not all auth problems are down to physical disasters and deliberate
attack - sometimes people just mess things up...)

Phew! Let’s talk about actually using it!

Two main things for operators to consider when enabling

Serve Stale:

1. Cache - how long can/should you keep stale BRsets in
cache and will there be any memory consumption
implications of this for your server(s)

2. User experience - how long should clients wait before
being served with stale content, and how often should
they expect their resolver to attempt to refresh the old
content

All content © Internet Systems Consortium, Inc. 6

%ﬁ

This slide speaks for itself:

1. If you enable Serve Stale, are you going to run into memory consumption problems? Need to
plan ahead?

PARTICULARLY on the memory consumption thing - bear in mind that it’s not just the popular
content that is going to be retained for longer, but the one-time-use content too, and this could
cause cache management issues in some implementations.

2. How do you want things to be for your clients/users?

How to enable and configure Serve-Stale

What you need to think about and how to
configure Serve Stale in:

*BIND

*Unbound

*Knot Resolver
*PowerDNS Recursor

\Y’ All content © Internet Systems Consortium, Inc. 7
a

Disclaimer: | know a lot about BIND - obviously!

Hopefully | won’t make too many mistakes when explaining how the other three implementations
work!

(But they did all approve the slides - so use those afterwards as the source of truth rather than
what | say!)

NOW, upfront | am going to say ‘there is a lot of data in the slides that follow’
I’'m NOT going to explain all the options and things to think about down to the tiniest detail
The approach I've taken, is that the slideset is your PRACTICAL TAKEAWAY, to use later.

So instead of bullet points on the slides that the speaker elaborates upon...
I’'m elaborating on the slides, but giving you bullet points in my talk over!

So | recommend that you listen rather than read (unless you can multi-task effectively)

Enabling Serve Stale in BIND

*Enable the stale cache (off by default in all currently supported versions):
stale-cache-enable yes;

*Configure how long to retain stale content (default 1 day):
max-stale-ttl 24H;

* Are you going to enable serving of stale answers now, or turn the feature
on/off when required?
stale-answer-enable yes;

or
rndc serve-stale on|off|reset

Note that you can’t enable stale answers without first starting BIND with
stale cache enabled - no stale cache means no stale answers available.

\Y‘ All content © Internet Systems Consortium, Inc. 8
N

BIND has two separate things to enable
- Retaining of stale content (in case it’s needed)
- Activating the processes to use stale content if it can’t be refreshed

Neither are enabled by default
It’s possible to enable stale cache and then turn on stale answers dynamically afterwards

How would you know you needed to do this though - and probably by the time you realised you
needed to, there could be a lot of unhappiness abounding?

(Optional) Configuring stale answers in BIND

These options are only effective when both stale-cache-enable and stale-answers-
enable are set to ‘yes’.

*Configure the TTL used for stale RRsets in query responses (default 30s):

*How long to serve stale before reattempting to refresh (default 30s):
stale-refresh-time 30s;

*How long do clients have to wait for a stale answer instead of the usual recursion
timeout and SERVFAIL?

stale-answer-client-timeout <duration>;

The duration above can be either zero (‘0’) or disabled/off (default off). Recursion
duration is controlled by option ‘resolver-query-timeout’, default 10s. ISC support
recommends not altering this!

\Y’ All content © Internet Systems Consortium, Inc. 9
N

You've got the knobs you need (if you want them) for tweaking the standard client experience - but
the defaults are sane and most users of Serve Stale won’t need to adjust them.

And then there’s an interesting knob: stale-answer-client-timeout
Oh we have had some fun with this one ...

The original idea was that you could decide how long the client had to wait before getting a stale
answer (but still leaving the cache refresh to complete as normal - successfully or otherwise).

Where we’re at now is that you either just have to let the client wait as usual until we replace
SERVFAIL with Serve Stale

OR

If there’s a stale cache hit, then serve that immediately and leave the refresh to do its thing
afterwards.

Would you want to do that? (More on that at the end (BIND is not the only implementation that
allows this) ...

BIND and stale answers - be aware that:

*BIND’s cache content management strategy is two-fold. Opportunistic cache
cleaning means that in-passing, TTL-expired content is removed. To enable stale

retained (if possible) for the period max-stale-ttl. Therefore your cache memory
consumption may increase significantly, up to the point that memory-based (least
recently used) cache cleaning is triggered.

*Content received with TTL=0 is not retained for use in stale answers, unless option
min-cache-itl has been used to override small or zero TTLs on received BRsets.

*NXDOMAIN RRsets are not retained for use in stale answers (this differs from
other implementations).

but doesn't trigger stale-refresh-time.

\Y‘ All content © Internet Systems Consortium, Inc. 10
N

The biggest takeaway point is the cache consumption one. BIND’s routine housekeeping of expired
content is less processing-intensive than the memory-based mechanism that is triggered when
max-cache-size is reached.

Monitor and provision more memory/cache and/or reduce how long you retain stale content for if
you need to and you will be happier...

And yes, we do do EDE. Both EDEs - except that we decided later not to apply Serve Stale to
NXDOMAINs, so you’ll never see EDE 19 in current BIND with Serve Stale enabled.

Enabling Serve Stale in Unbound

*Enable the serving of stale content (disabled by default):
serve-expired: yes

*Enable prefetch (to help keep popular cache up-to-date):
prefetch: yes

*How long do you want stale RRsets to continue to be used for serving stale
answers (default is all content is eligible indefinitely; recommendation is 1 day)?

*Decide whether or not you want automatic extension of use of expired stale RRsets
(default no)

serve-expired-ttl-reset: yes|no

This setting extends/resets the “use this stale until” timestamp added to stale
RRsets in cache when a refresh attempt fails. Without it, content is only used stale
until the limit specified in serve-expired-ttl.

\Y‘ All content © Internet Systems Consortium, Inc. 1
N

The original default behaviour with “serve-expired: yes” AND NOTHING ELSE CONFIGURED is that
all content in cache is eligible to be served stale if needed.

This works because Unbound has no expired-TTL cleaning mechanism, so as long as there is still
room in cache, the content remains available.

Alternatively, you can say ‘only use these old RRsets until a given limit and never again thereafter

And on top of that, you can also opt to reset that ‘only for so long’ timer - but that requires a full
attempt to refresh before the old content gets sent to the client.

(Optional) Configuring stale answers in Unbound

serve-expired-reply-ttl: 30 # 30 seconds (in seconds)

*How long do clients have to wait for a stale answer instead of the usual recursion
timeout and SERVFAIL?

serve-expired-client-timeout: 1800 #1.8 seconds (in
milliseconds)

The above example is deliberately just shorter than most client-side query
response timeouts of 2 seconds, but the default is zero - respond stale first and
attempt to refresh afterwards.

*Configure whether or not you want to send Extended DNS Errors (EDE) in query

ede: yes
ede-serve-expired: yes

\Y‘ All content © Internet Systems Consortium, Inc. 12
N

Again, and similar to BIND, in Unbound you’ve got the knobs you need (if you want them) for
tweaking the standard client experience - but the defaults are sane and most users of Serve Stale
won’t need to adjust them.

... except possibly serve-expired-client-timeout

This works similarly to the BIND option stale-answer-client-timeout - it’s about how long to wait for
refresh recursion to complete for the first time, before opting to use an existing stale RRset for the
reply to the client. But in Unbound you can make more use of it, as well as opting to serve stale
first and then refresh afterwards.

Also note that you will need to enable both EDE and the serving of EDE when providing stale
answers to clients.

Unbound and stale answers - useful to know:

*Unbound’s cache content management strategy is based on eviction
Recently Used (LRU) basis. Enabling Serve Stale therefore is
unlikely to change cache composition or memory consumption.

*Unbound has an additional back-end cache DB feature available
which may change how Serve Stale operates - see https://
unbound.docs.nlnetlabs.nl/en/latest/manpages/
unbound.conf.html#cache-db-module-options

* Content received with TTL=0 is not retained for use in stale answers
(because it is never added to cache) unless options cache-min-tl
and/or cache-min-negative-itl have been used to override small or

\Y’ All content © Internet Systems Consortium, Inc. 13
N

The takeaway from this slide is that you shouldn’t need to worry overly about cache consumption
in Unbound if you enable stale answers - it’s not going to change cache consumption. Cache
content that was least recently used will still be evicted once cache memory limits have been
reached.

Also note that back-end cache DB feature - | did not dig into this and | leave its functionality for the
reader to research!

Unbound and stale answers - useful to know:

*There are no options to directly control how frequently Unbound
attempts to refresh stale content before using it again; client
queries will continue to use the stale content without initiating a
new refresh until 5 seconds have passed since the last failure.

*The client experience with serve-expired-ttl-reset: yes can vary
because although a failed refresh will reset the serve-expired-ttl

use before the refresh, it won’t be sent to the client until after
the refresh attempt has finished processing and has failed
(serve-expired-client-timeout isn’t used for non-eligible stale
content).

\Y‘ All content © Internet Systems Consortium, Inc. 14
N

What this means is that after the first ‘serve-expired-client-timeout’ and then use of stale RRsets,
those same stale RRsets will continue to be used immediately for subsequent client queries until 5
seconds have passed, at which point, the next client query will cause another refresh attempt to be
initiated.

And ‘serve-expired-ttl-reset’ is complicated. What it essentially means is that IF you decide to set
the limit on ‘this stale content is so stale that it would now be poisonous if used’ (serve-expired-ttl)
instead of leaving all stale content eligible until it’s evicted from cache, that you DO have the
possibility of using it in desperation. HOWEVER, a thorough attempt to refresh it will take place
first (serve-expired-client-timeout does NOT apply here). But at least there is the possibility of
‘answers of last resort’ - should you want them?

Enabling Serve Stale in Knot Resolver

*Enable the serving of stale content (disabled by
default):
options:

serve-stale: true

This setting enables the use of stale RRsets in order to
avoid sending SERVFAIL when cache content can’t be
refreshed. They are usable for up to 24 hours after
TTL expiry. This stale validity period is not directly

configurable.

\Y’ All content © Internet Systems Consortium, Inc. 15
N

Knot Resolver has a simplistic approach to Serve Stale, with few options. Basically, just enable it
and it’s ‘on’!

Knot Resolver and stale answers - need to know:

*Knot Resolver’s cache content management strategy is based on eviction of
RRsets once cache memory limits are reached. Enabling serve-stale
therefore is unlikely to change cache composition or memory consumption.

*Stale RRsets are returned in query responses with a 1 second TTL.

*There is no directly-configurable client query/resolver timeout.

*It’s nevertheless possible to change some timers (e.g. .timeout
and .callback) by directly modifying the Jua module: https:/gitlab.nic.cz/knot/
knot-resolver/-/blob/master/modules/serve_stale/serve_stale.lua

*Content received with TTL=0 is eligible to be used in stale answers even if
Knot Resolver option cache/tfl-min (default 5s) is set to zero.

*Knot Resolver (version 6 and up) automatically adds EDE options 3 or 19 to
guery responses with stale content.

\Y’ All content © Internet Systems Consortium, Inc. 17
N

This option is not specifically for Serve Stale - it is about setting timeouts during recursion anyway.
If “serve-stale: true” had not been set, then the client would receive SERVFAIL instead of stale
content.

You probably don’t want to adjust this.

(Optional) Configuring stale answers in Knot
Resolver

* Adjust how long to wait before retrying unreachable
servers (default 1000 ms):

cache:
ns-timeout: <time ms|s|m|h|d>

As long as as all nameservers are marked
unreachable and have been for less than ns-

answers without an attempt to refresh first.

\Y’ All content © Internet Systems Consortium, Inc. 16
N

Knot Resolver’s cache management strategy is similar to Unbound’s - so enabling Serve Stale isn’t
going to change much about cache consumption or cache composition.

As noted before, there’s not much that you can tweak in the Knot Resolver configuration to change
Serve Stale behaviour, but you could modify some timers in the lua module instead.

But please note one BIG DIFFERENCE in relation to TTL=0 content - Knot resolver already defaults
to overriding the cache TTL on RRsets received with TTL < 5s. These RRsets are added to cache
regardless - and they will still be added to cache if this override is disabled using cache/ttl-min.
There is nothing in Knot Resolver’s Serve Stale handing to exempt ‘one time use’ TTL=0 RRsets
from use when stale, if they cannot be refreshed.

Enabling Serve Stale in PowerDNS Recursor

*Enable the serving of stale content (disabled by default) by choosing how
many times to reset a stale BRset’s TTL in the configuration or command
line:
serve-stale-extensions <count>

The ‘revival’ mechanism takes into account how long ago the last
extension was done when doing a new extension. RRsets that are only
queried once in a while get the same maximum stale period as compared
with RRsets queried very frequently (assuming original TTL>= 30s).

\Y’ All content © Internet Systems Consortium, Inc. 18
N

PowerDNS Recursor has taken a slightly different approach to implementing Serve Stale.

Note that all implementations have to consider:

- What TTL to put on stale answers served to clients

- How long to continue to use stale RRsets from cache before attempting to refresh them
again

PowerDNS Recursor handles this when it ‘revives’ stale content by giving a new TTL of 30s in cache,
which then ‘counts down’ in the same way as the originally received TTL from the authoritative
servers did - after which it can’t be served again without attempting to refresh it.

There is also a ‘count’ that you can configured - which is how many times this ‘add another 30s TTL’
can be allowed to happen.

Ah but (you might say), “what if the RRset is only queried once every 5 minutes, does that mean it
can survive in cache to be reused much longer than an RRset that is queried every second?” |
asked. Apparently not - the <count> and calculation is done on the basis that the refresh attempt
was done after each 30s, so old content that is infrequently queried doesn’t get reused for longer
than popular content.

Also note that the 30s TTL used when ‘reviving’ stale content might not be 30s if the original
authoritative TTL was shorter than 30s. (But the calculations on how long this content is available
are still done on <count> x 30s).

PowerDNS and stale answers - useful to know:

*PowerDNS Recursor’s cache content management strategy is based both on
eviction of expired content and on eviction of RRsets based on LRU once cache
memory limits are reached. Enabling Serve Stale defers eviction of expired
content until serve-stale-extensions x 30s. Therefore your cache memory
consumption will increase and there may be more LRU cleaning occurring.

*Content received with TTL=0 is eligible to be used in stale answers even if
PowerDNS Recursor option minimum:-ttl-override (default 1s) is set to zero.

*There is no specific configurable timer for how long to wait for on a refresh
attempt before serving stale content; the time to wait is the same, irrespective of
whether PowerDNS would respond with SERVFAIL or use stale RRsets.

same way as the original RRset’s TTL would have done.

*PowerDNS does not (yet) add EDE options to query responses with stale content,
but this is planned as a future feature.

\Y’ All content © Internet Systems Consortium, Inc. 19
N

PowerDNS Recursor is akin to BIND in that there are two cache eviction strategies, one based on
TTL (content expiry) and the other on reaching cache memory limits, so you will need to think
about cache content and cache memory consumption if you enable Serve Stale.

And coming soon - EDE options.

Other resolver implementations exist, for
example:

* Appliances that use Open Source DNS ‘inside the box’ will
almost certainly enable Serve Stale and provide some
configuration options.

*Akamai DNS has a switch (default ‘on’) for serving stale content
- it is an extension to prefetch functionality for ‘popular’ content

*Cloud-based resolver solutions appear to implement some
types of ‘failure mode’ recovery, and this probably includes
serving of stale content (disclaimer - | have not researched this!)

All content © Internet Systems Consortium, Inc. 20

A

If you’re using something other than the DNS resolver implementations | covered then please ask
your provider for advice on whether or not they provided this feature and if they do, how it works
and what configurable options are available.

Not covered in this presentation...

*Logging and statistics (mostly included in software providers’
documentation).

*Serve Stale in relation to DNSSEC validation failures and stale DNSSEC
material.

*Use of stale cache data when following intermediate referrals.

*Expired cache containing both CNAME/DNAME and other records for the
same name (due to different query responses at different times).

*“Fail” responses (as opposed to failure to respond by authoritative servers) -
which of these trigger Serve Stale?

It’'s reasonable to assume that the software implementations handle all of
the above sanely - but if you need to know - ask your software provider!

m’ All content © Internet Systems Consortium, Inc. 21
[

Please refer to the documentation for logging and statistics - and also take a look at both of them if
you enable Serve Stale in your environment . Is it being triggered? Is it helping you?

There are a lot of nuances and edge scenarios that | didn’t dig into (well, | dug into some of them
while preparing this talk, mainly to make sure | understood the options correctly, but also because
| was fascinated by how the underlying resolver architecture drove the Serve Stale implementation
choices made by the developers).

If you have any specific “what if...?” questions, then | would encourage you to ask your software
provider directly.

A challenge!

*Is the Serve Stale feature genuinely useful?
*Do operators of resolvers know for certain that it is helping their servers?

*| have never yet heard of a situation where having Serve Stale enabled
‘saved the day’ - but would love to hear from anyone who has one!

*One ‘useful’ that is perhaps passing under the radar might be that
resolvers are ‘smoothing over’ short term authoritative server
unavailability or slowdowns. Would we even know that this is happening?

*What do we think about ‘serve stale content first, refresh afterwards’
(available in some implementations) - and does that count as ‘useful'?

* Analysis of Resolver logging and statistics from servers in production
environments might be the starting point for an assessment of the
practical benefits of the Serve Stale feature - a talk for OARC45?

\Y’ All content © Internet Systems Consortium, Inc. 22
N

| asked the questions above at the end of my talk. Please watch the recording if you want to hear

the discussion, but essentially:

- Several operators confirmed my hypothesis that it does get triggered, but on a small scale
(“smoothing over the cracks...”)

- No-one has yet seen it ‘save the day’ on a big DNS authoritative services outage

- One hypothesis on “smoothing over the cracks” is that the cracks are BGP and other routing
‘flaps’.

So the conclusion we came to, is that this feature IS genuinely useful, but not a knight in shining
armour riding in to save the day - more it’s a series of small bandages being applied just to hold
things together from time to time on an ad-hoc basis to improve the ‘client experience’.

(We didn’t touch on ‘serve stale content first, refresh afterwards’ — which sounds tempting if you
are being measured on time to respond to client queries — but do you really want to serve a stale
answer when there may be a different answer available from the authoritative servers once that
refresh has completed?).

Discussion time ...

RFC 8767: “Stale bread is better
than no bread.”

m’ All content © Internet Systems Consortium, Inc. 23
-

References:

-https //kb.i |sc org/docs/serve -stale- lmplementatlon -details
-htt

§tale dat A
* https://blog.ninetlabs.nl/some-country-for-old-men/

* https://websites.pages.nic.cz/knot-resolver.cz/documentation/v5.7.4/modules-
serve_stale.html|

» https://www.knot-resolver.cz/documentation/latest/config-serve-stale.html
* https://gitlab.nic.cz/knot/knot-resolver/-/blob/master/modules/serve stale/

serve_stale.lua

* https://docs.powerdns.com/recursor/appendices/internals.html#serve-stale

. :/l .powerdns.com/recursor/settings.html#

\Y’ All content © Internet Systems Consortium, Inc. 24

Thanks to:

*Wouter Wijngaards and Yorgos Thessalonikefs from NlL.net Labs for
detailed information about Unbound s Serve Stale implementation

configuration optlons in Knot Resolver
*Otto Moerbeek at PowerDNS for disentangling in my mind the different

Also acknowledging the royalty-free image creators contributing to
slide 2:
« clickschool of Pixabay

+ Megan Rexazin Conde of Pixabay

+ GraphicMama-team of Pixabay
+ Yayamamo of Wikimedia Commons

m’ All content © Internet Systems Consortium, Inc. 25
=

Thank you for listening.

*ISC main website: https://www.isc.org

* Software downloads: https://www.isc.org/
download or https: //downloads.isc. org

* Presentations: https://www.isc.org/
presentations

*Main GitLab: https://gitlab.isc.org

]

m All content © Internet Systems Consortium, Inc. 26

