What breaks when you apply DNS at the root of network trust

(lots, but it can all be fixed)

By David Redekop, ADAMnetworks

What is DTTS/ZTDNS?

- Quick review:
- DTTS → Don't Talk To Strangers (every IP not resolved by DNS is a stranger)
 at layer 3 security gateway
- ZTDNS → Microsoft naming convention for this application at Windows endpoint
- Essentially: DNS as the root of trust for egress traffic
- Expectation is that every destination IP will be resolved by DNS first
 - DNS to be answered by a Protective Resolver is assumed but technically optional
- Can run on a layer ¾ gateway for static endpoints
- Can run on endpoint (for multi-homed or roaming devices)

How Don't Talk to Strangers | ZTDNS works

Additional details on how DTTS/ZTDNS works

- For this to work, endpoints are enforced to use designated DNS *only
 - o If browser attempts DoH by any other means, it will lose all DNS and therefore its connectivity
 - This is good for network defenders, thwarts typical threat actor network security circumvention.
 - This is bad for end users and apps that want to do their own thing
- Once source → destination is allowed, any IP protocol, any port is allowed
 - Unless overridden by explicit block list by protocol and/or port and/or destination
- Time-bound (DTTS): if TTL is unreasonably long, the DNS answer may be modified and shortened
- Outgoing connection allow-rules are ephemeral; exist only for DNS TTL period, thereafter allow-rule is destroyed

What all does this approach break?

- LEGACY Any direct-by-IP connection, typically legacy processes that ignore network-designated DNS server usage
 - Legacy application with hard-coded IPs in endpoint configurations
 - Hard-coded DNS servers (sometimes, administrators, sometimes manufacturer such as Chromecast)
 - Hard-coded NTP servers (this one is of particular concern because of UDP amplification attack surface)
 - Apps designed to circumvent protective DNS filtering (e.g. Telegram, Retail VPNs, P2P, Psiphon)
- VOIP/P2P Any modern application that includes connections to IP addresses that were not discovered via DNS - breaks some, but not all functionality
 - Video and voice apps using hard-coded IPs for SIP, RTP, STUN, TURN, etc.
 - o Online collaboration tools like zoom, Teams, Google Meet
 - P2P apps such as torrent clients cannot connect to peers
- TIME BOUND expiry any application that uses DNS results beyond the TTL
 - Legacy Internet Explorer browser
 - Outlook caches IMAP beyond TTL

The way to resolve and next steps

 Methods exist already to exempt trusted prefixes + protocols + port specifications to work, e.g. Google Meet uses:

```
{"destinations":["142.250.82.0/24","74.125.250.0/24","2001:4860:4864:5::0/64","2001:4860:4
864:6::/64"],"ranges":[{"protocols":["udp"],"dst":{"start":19302,"end":19309}},{"protocols
":["tcp"],"dst":{"start":443,"end":443}},{"protocols":["udp"],"dst":{"start":3478,"end":34
78}}]}
{"destinations":["74.125.247.128"],"ranges":[{"protocols":["udp","tcp"],"dst":{"start":347
8,"end":3478}}]}
{"destinations":["74.125.138.95"],"ranges":[{"protocols":["udp"],"dst":{"start":443,"end":443}}]}
```

- RFC draft with co-authors Tommy Jensen, John Todd, David Redekop
- Call to app development to avoid DNSless connection attempts, use new rfc standard when adopted

Other thoughts that make DTTS/ZTDNS worthwhile

- Encrypted Client Hello (ECH) has led to Proxy and DPI usage decline for good reasons (better privacy and security)
- DTTS/ZTDNS approach gives network edges the visibility they need for compliance and visibility
- Example #1 high value use case for DTTS: absolutely no reason any Active Directory domain controller needs to have internet access beyond NTP, Windows Update, combine with network seg
- Example #2 disrupt multi-stage attacks when C2 connection is made.
- Example #3 solve IT/OT merger with a practical alternative to a unidirectional firewall

Presentation Summary

- DTTS/ZTDNS is leak-proof DNS-based egress control
- It ensures all destination IPs are resolved by DNS
- Endpoints must use designated DNS servers to even have connectivity
- Some legacy apps will not function (until given explicit network permission)
- This approach improves network visibility
- Great for anti-circumvention and making
 C2 as impossible as you like

