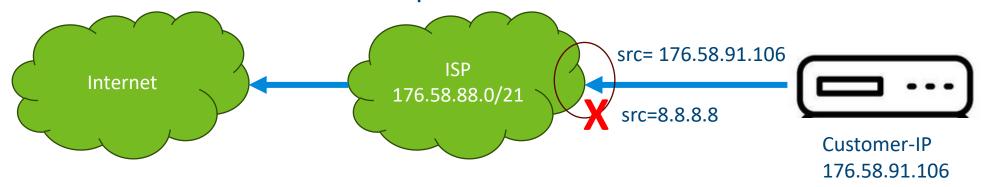


Anycast DNS Local Nodes and Routing Problems due to Asymmetric Routing on Internet Exchanges

Klaus Darilion · Head of Operations · klaus.darilion@nic.at

Executive Summary

- 1. BCP 38 / RFC 2827: Network Ingress Filtering
 - Prevent IP address spoofing
- 2. Anycast DNS Local Node
 - Anycast Prefix only announced to IX
- 3. Asymmetric Routing
 - Request received via IX
 - No route to send response on IX
- → If that 3 meet together -> Problem



1. BCP 38

- ISP assigns one or more IP address to a customer
- ISP verifies src IP of packets sent by the customer
 - must be one of the assigned addresses
 - then ISP will route the packet

- customer uses a wrong source IP address
 - packets are dropped

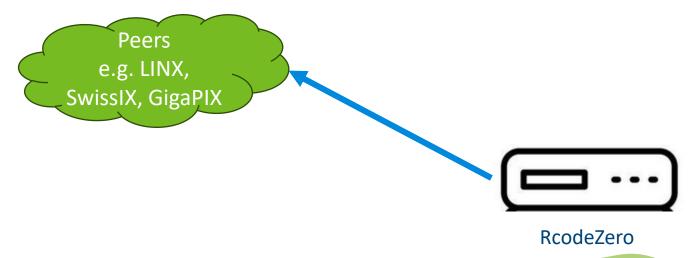
Many of our providers perform BCP38 filtering

2. "Local Node"

Let's describe terminology

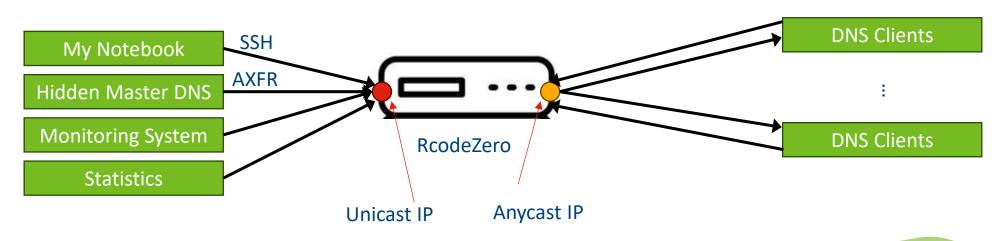
"Transit"

- To talk with the "whole" Internet, we need a provider that forwards (transit) our packets to the destintations
- This provider is called "transit provider" (or "upstream provider")
- We have to pay the transit provider



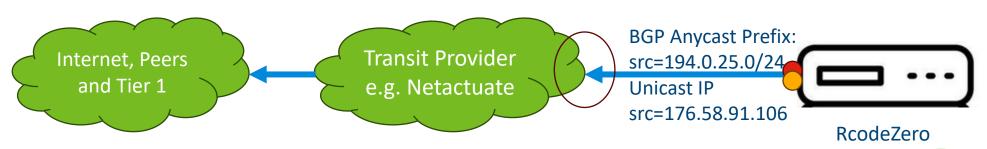
"Peering"

- Connectivity to some other networks (only that networks)
- No connectivity to the remaining Internet
- Usually free of costs (except switch port costs at the IX)



Anycast DNS Server Addressing

- Every server has 2 categories of IP addresses
 - A Unicast (globally unique) IP address for the server management
 - The Anycast IP addresses for the DNS service

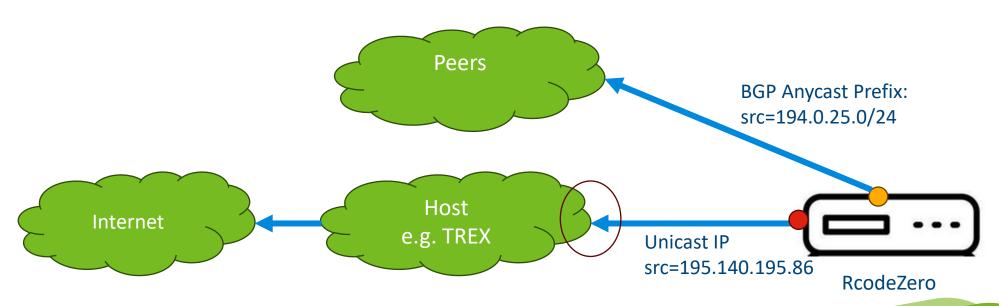


RcodeZero "Global Node"

- Single network link for:
 - Management traffic
 - Anycast DNS traffic
- Transit for mgmt-traffic and anycast traffic
 - The provider knows our mgmt IP
 - The provider learns our anycast IP addresses (BGP)
 - Allows outgoing data with mgmt and anycast IP as source

RcodeZero Local Node (IX nodes)

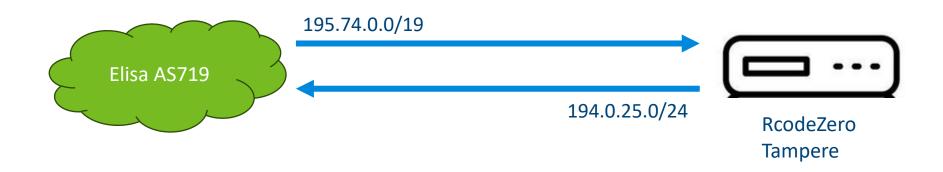
- The IX provides free colocation and IP connectivity for the server management
- Additionally the DNS server is directly connected to an Internet Exchange (peerings)
- The server has 2 network links
 - Management traffic with transit
 - Service traffic (Anycast DNS) with peerings only



Anycast Local Node

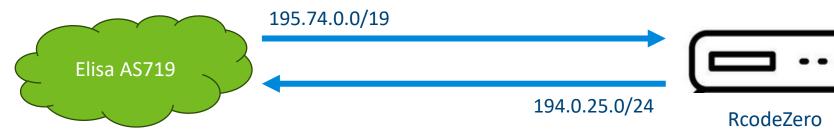
- The transit provider on the management link only knows the unicast IP address
 - BCP38? On the managent link only traffic originating from that mgmt IP is accepted

3. Symmetric vs Asymmetric Routing



Peering

 Every AS announces its own (and customer) prefixes to peers


Symmetric Routing

- Peer sends DNS request to us via IX
- We respond with DNS Response via IX

DNS Request

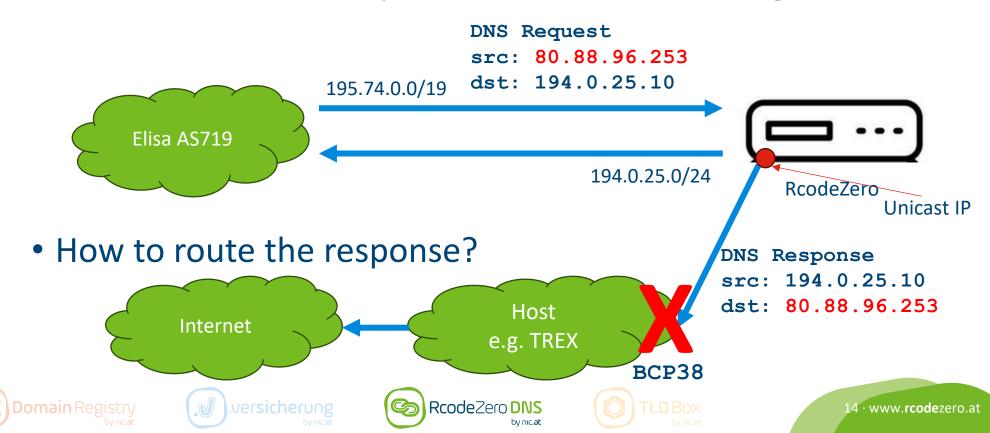
src: 195.74.4.6

dst: 194.0.25.10

DNS Response

src: 194.0.25.10

dst: 195.74.4.6



Asymmetric Routing

- Clients will
 experience timeouts!
 (That's how we get
 aware of this issue.)
- Peer sends DNS request to us via IX
- No Route to send Response via Internet Exchange

How to solve the issue?

- We must forward the response to someone that routes it
- 1. Mgmt traffic provider should tweak BCP38 filter
 - disable BCP38, static allow-list for our Anycast prefixes, ...
 - preferred
 - not always possible or simple not wanted
- 2. Beg for or buy transit from some ISP
 - potential extra costs for transit or cross connect patches
 - def. route via IX may break IX term
 - takes time
- 3. Tunnel traffic to a global node
- Or a combination of 2+3

DNS Request

src: 80.88.96.253
dst: 194.0.25.10

Elisa AS719

RcodeZero Local Node

DNS Response

src: 194.0.25.10 GRE Tunnel_{80.88.96.253}

Host e.g. TREX

Integet

Transit Provider e.g. Netactuate

RcodeZero Global Node

DNS Response

src: 194.0.25.10

dst: 80.88.96.253

Implementation Routing

- 2 separate routing tables (idea from Aleksi Suhonen)
 - default routing table for mgmt traffic
 - table "2" for anycast DNS traffic
- Feed IX routes into table 2

```
route-map from-ix permit 10 set table 2
```

Activate table 2 for Anycast DNS traffic

```
routing-policy:
```

- from: 194.0.25.0/24 table: 2

Implementation GRE Tunnel

Create GRE Tunnel

```
tunnels:
   ip6gre-toglobal:
      mode: ip6gre
      local: 2a00:11c0:4a:10::165
      remote: 2a02:850:ffe7::1
```

Add default route into tunnel

```
! Make a static rule with higher distance !(eBGP=20, iBGP=200) to act only as fallback ! May be overruled by a BGP default route ip route 0.0.0.0/0 ip6gre-toglobal 250 table 2 ipv6 route ::/0 ip6gre-toglobal 250 table 2
```


Implementation GRE Tunnel

Create GRE Tunnel

```
tunnels:
   ip6gre-toglobal:
      mode: ip6gre
      local: 2a00:11c0:4a:10::165
      remote: 2a02:850:ffe7::1
```

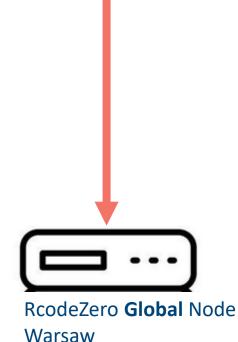
Which global node should be used?

Add default route into tunnel

```
! Make a static rule with higher distance !(eBGP=20, iBGP=200) to act only as fallback ! May be overruled by a BGP default route ip route 0.0.0.0/0 ip6gre-toglobal 250 table 2 ipv6 route ::/0 ip6gre-toglobal 250 table 2
```


Anycast GRE

- Automatic nearest node
- Failover during global node maintenance


RcodeZero **Global** Node Stockholm

2a02:850:ffe7::1

RcodeZero **Global** Node Riga

2a02:850:ffe7::1

RcodeZero Local Node

Tampere

2a02:850:ffe7::1

Summary

- Anycast GRE tunnel from local nodes to global nodes
- Local host does BCP38?
 - Default route for anycast DNS traffic into GRE tunnel
 - Optionally add BGP-based default route sponsored by a local ISP (can be added later)
- We still support IXs with local nodes

 How do others anycast providers with local nodes solve the problem?

Klaus Darilion · Head of Operations

klaus.darilion@nic.at

