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LLM-Assisted PRotocol Attack Discovery 

[1] Aygun, R. Can, Yehuda Afek, Anat Bremler-Barr, and Leonard Kleinrock. 

“LAPRAD: LLM-Assisted Protocol Attack Discovery,” IFIP Networking IOCRCI Workshop



LLMs for DGA Detection

[2] Alqahtani, Hamed, and Gulshan Kumar. “Large Language Models for Effective Detection of  Algorithmically Generated 

Domains: A Comprehensive Review.” Computer Modeling in Engineering & Sciences 144, no. 2 (2025): 1439.
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Aspect Traditional ML/Statistical Approach LLM-based Approach

Input

Adaptability

Explainability

Attack

Coverage

Weakness

Hand-crafted features, 

flow statsistics

Strong in-domain;

Weaker on novel attacks

Limited

(scores, feature weights)

Good for volumetric 

& known patterns

Efficient but brittle 

to unseen variants

Raw/semi-structured DNS 

sequences + features

Prompt-based zero/few-shot;

adapts with minimal training

Natural-language explanations,

Human-readable reasoning

Broader: flooding, amplification, 

semantic abuses, policy misuses

Higher cost/latency, 

adversarial risks

LLMs vs. Traditional Methods
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DNS Abuse Taxonomy

DNS as tool or target for DDoS 

Victim

Attacker Resolver Authoritative 

server

Flooding

Reflection / Amplification

Redirection

Subversion

DNSSEC Abuse



DNS Abuse Taxonomy

Flooding

Reflection

/Amplification

Redirection

Subversion

DNSSEC Abuse

Abuse Type                  Description       Related DDoS Vector

Sending excessive DNS queries 

to exhaust server resources

Exploiting resolvers to reflect 

and amplify traffic toward a victim

Manipulating DNS responses to 

redirect traffic (e.g., to a botnet controller)

Compromising domain registration 

or zone control to manipulate traffic

Abusing DNSSEC’s large responses or 

misconfigurations to overwhelm systems

Direct DDoS,

Resource exhaustion

Amplification DDoS

Indirect DDoS,

Traffic Manipulation

Indirect DDoS,

Traffic Manipulation

Amplification DDoS,

Resource exhaustion



DNS Abuse Taxonomy

Abuse Type                  Description       Related DDoS Vector

DNSSEC

Abuse

Flooding

Reflection

/Amplification

Redirection

 
DNS

Subversion

Response Flooding

NXDOMAIN Flooding

(slow drip, random subdomain)

iDNS

TsuNAME

Unchained

NXNS Attack

NRDelegation Attack

Loop Attack

Query Flooding Kaminsky Attack

DNS Cache Poisoning

SAD DNS

Domain Hijacking

Packet Interception

DNS Tunneling

Fast Flux

DGA (Malware C2 Infra)

DNSSEC Amplification

NSEC/NSEC3 Walking

Bogus DNSSEC Data Injection

Algorithm Downgrade Attack

Class Subclass Class Subclass

Resolution Failure Flooding

(domain lock-up, 

phantom subdomain)
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DNSSEC

Abuse
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/Amplification

Redirection

 
DNS

Subversion

Response Flooding

NXDOMAIN Flooding

(slow drip, random subdomain)

iDNS

TsuNAME

Unchained

NXNS Attack

NRDelegation Attack

Loop Attack

Query Flooding Kaminsky Attack

DNS Cache Poisoning

SAD DNS

Domain Hijacking

Packet Interception

DNS Tunneling

Fast Flux

DGA (Malware C2 Infra)

DNSSEC Amplification

NSEC/NSEC3 Walking

Bogus DNSSEC Data Injection

Algorithm Downgrade Attack

Class Subclass Class Subclass

Resolution Failure Flooding

(domain lock-up, 

phantom subdomain)



DNS Abuse Taxonomy

Attack Name         Key Characteristics                    Traffic Features
Traffic

Generation

LLM

Detectability

Deception

Risk

NXDOMAIN

Flooding

Random/non-existent

Subdomains

RCODE(3)_ratio ↑
query_rate_and_entropy ↑

unique_qname_count ↑
qname_dist_entropy_norm ↑

Easy High Moderate



dns_attack_taxonomy.json

- Class / SubClass

- Explanation

- Feature_Conditions

- Example_Instance

RAW (.pcap)

dns_extractor.py

compute_features.py

llm_formatter.py

FLAN-T5 

Model

dns_llm_train.json

dns_llm_val.json
 > input_text: prompt

 > target_text:

    structured JSON

From 

data 

collection

…

Knowledge Base

(Protocol + Attack knowledge)

Gradio Web UI

app_dns_t5.py

train_t5.py

predict_t5.py

cluster.py

DNS Abuse Detection WorkFlow



Input Model Output

Which datasets/features?
Which LLM family/version?

How you’ll feed data?

What you want back?

DNS Abuse Detection WorkFlow



Input

Input Models

- Benign traffic:

   > OPENINTEL datasets (ground baseline)

- Attack traffic: 

> Open-source attack datasets

- Traffic Generators + LLM-augmentation

> Flamethrower

   > Scapy, TRex, MoonGen 

(Optional) 

 Q. Traffic logs from DNS Operators?
Which datasets/features?

Public

Datasets

Synthetic

Attack 

Datasets

Adversarial

Traffic

Datasets

DNS 

Server

Logs
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> Flamethrower

   > Scapy, TRex, MoonGen
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   > OPENINTEL datasets (ground baseline)

- Attack traffic: 
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(Optional) 
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Input

Input Models

Which datasets/features?

RAW (.pcap)

dns_extractor.py

llm_formatter.py

compute_features.py

STD_COLS (Local Features)

frame.time_epoch, ip.src, ipv6.src, 

dns.flags.response, dns.qry.name, dns.resp.name, 

dns.resp.ttl, dns.resp.len, dns.flags.rcode, 

dns.count.answers, dns.count.add_rr, 

udp.length, frame.len



Input

Input Models
Outputs for DNS analysis 

and LLM prompting: 

--mode packet

Fine-grained per-packet context  

+ file-level aggregates

--mode window

Sliding-window aggregaton over 

--window seconds; 

 > Per-window featuresWhich datasets/features?

RAW (.pcap)

dns_extractor.py

llm_formatter.py

compute_features.py



Input

Input Models

Which datasets/features?

RAW (.pcap)

dns_extractor.py

llm_formatter.py

compute_features.py

Converts ‘features.csv’ into JSONL 

for T5 training or inference prompts

--mode infer 

Build/keep ‘input_text,’ 

append schema suffix, and write 

all prompts to ‘out_val’

--mode train

Requires ‘label’; 

performs safe train/val split

Use taxonomy to build ‘target_text’



LLM Models

Type Models Key Characteristics

Decoder-

only

Encoder-

only

Encoder-

Decoder

We need “ Classification + Explanation + Generation + … ”

Model

Strong at log/query generation

Autoregressive: predicts next token sequentially

Less suitable for classification/detection tasks

GPT-

Family,

LLaMA

BERT-,

Family

T5,
BART,

UL2

High accuracy in detection/classification

Cannot generate outputs; 

Limited explanatory power

Supports detection, explanation, and generation

Larger parameter size / higher computational cost
Which LLM family/version?

How you’ll feed data?



LLM Models

T5: Text-to-Text Transfer Transformer 

Model

Which LLM family/version?

How you’ll feed data?



Which LLM family/version?

How you’ll feed data?

LLM Models

Model T5 Training & Inference Scripts

train_t5.py

Fine-tunes T5 on DNS prompts/targets 

with robust metrics

Tokenizer/Model: AutoTokenizer, 

AutoModelForSeq2SeqLM  

predict_t5.py

Batch-generated normalized single-line 

JSON per input

FLAN-T5 

Model

train_t5.py

predict_t5.py

app_dns_t5.py



LLM Models

Model

Which LLM family/version?

How you’ll feed data?

Self-attention 

Cross-attention 

12x 

Encoder

12x 

Decoder

Formmated DNS Log

JSON token

sequence
T5-Base Model
       large

       small

         …



LLM Models

- Knowledge base as RAG: 

> Up-to-date data reasoning from RFCs 

and attack reports

Model

Which LLM family/version?

How you’ll feed data? Flan-T5

Knowledge Base
search

retrieve

- DNS attack taxonomy for LLM Inference:

dns_attack_

taxonomy.json

kb_rfcs.json

kb_attacks.json



Output Models

What you want back?

PCAP to Inference: End-to-End Demo

 - Gradio Web UI

Summary Card (Gradio HTML): 

 - Class

 - Subclass

 - Score

 - Explanation

 - Mitigation

CSV (labelled): 

per-row + final aggregated label

FLAN-T5 

Model

train_t5.py

predict_t5.py

app_dns_t5.py

Output



Output Models

What you want back?

PCAP to Inference: End-to-End Demo

- Grafana/Prometheus

Prometheus: 

 - exports/metrics (port: 9108); 

Grafana Panels:

 - dns_pipeline_seconds

 - dns_label_ratio

 - dns_final_score

 - dns_nxdomain_ratio …

FLAN-T5 

Model

train_t5.py

predict_t5.py

app_dns_t5.py

Output



Future Work

Short-term: Datasets, Benchmarking
    > Benchmark diverse DNS datasets 

    > Compare across model families (Traditional MLs vs. LLMs)

Mid-term: Develop a Synthetic / Adversarial Traffic Framework
    > Adversarial Robustness Testing  

    > Improve Trustworthiness

Long-term: Towards Operator-grade Deployment



Simple DEMO (3m)
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