
LLMs for DNS Abuse Detection:

Promising or Overhyped?

(early-stage work)

Jihye Kim
Network Security Researcher

DNS-OARC 45

LLMs are Everywhere!

LLMs are Everywhere!

LLM-Assisted PRotocol Attack Discovery

[1] Aygun, R. Can, Yehuda Afek, Anat Bremler-Barr, and Leonard Kleinrock.

“LAPRAD: LLM-Assisted Protocol Attack Discovery,” IFIP Networking IOCRCI Workshop

LLMs for DGA Detection

[2] Alqahtani, Hamed, and Gulshan Kumar. “Large Language Models for Effective Detection of Algorithmically Generated

Domains: A Comprehensive Review.” Computer Modeling in Engineering & Sciences 144, no. 2 (2025): 1439.

Symbolic and text-based: naturally fits LLM tokenization

Human-readable, structurally complex

Real-world attack surface with diverse threats

Benchmark for structured reasoning

DNS for LLMs: Why DNS is a good input?

DNS for LLMs: Why DNS is a good input?

Symbolic and text-based: naturally fits LLM tokenization

Human-readable, structurally complex

Real-world attack surface with diverse threats

Benchmark for structured reasoning

DNS for LLMs: Why DNS is a good input?

Symbolic and text-based: naturally fits LLM tokenization

Human-readable, structurally complex

Real-world attack surface with diverse threats

Benchmark for structured reasoning

DNS for LLMs: Why DNS is a good input?

Symbolic and text-based: naturally fits LLM tokenization

Human-readable, structurally complex

Real-world attack surface with diverse threats

Benchmark for structured reasoning

Semantic / context detection

Prompt-based Zero / Few-shot generalization

Explainability via natural language

Actionable response generation

LLMs for DNS: Why LLMs are good for DNS?

Semantic / context detection

Prompt-based Zero / Few-shot generalization

Explainability via natural language

Actionable response generation

LLMs for DNS: Why LLMs are good for DNS?

Semantic / context detection

Prompt-based Zero / Few-shot generalization

Explainability via natural language

Actionable response generation

LLMs for DNS: Why LLMs are good for DNS?

Semantic / context detection

Prompt-based Zero / Few-shot generalization

Explainability via natural language

Actionable response generation

LLMs for DNS: Why LLMs are good for DNS?

Aspect Traditional ML/Statistical Approach LLM-based Approach

Input

Adaptability

Explainability

Attack

Coverage

Weakness

Hand-crafted features,

flow statsistics

Strong in-domain;

Weaker on novel attacks

Limited

(scores, feature weights)

Good for volumetric

& known patterns

Efficient but brittle

to unseen variants

Raw/semi-structured DNS

sequences + features

Prompt-based zero/few-shot;

adapts with minimal training

Natural-language explanations,

Human-readable reasoning

Broader: flooding, amplification,

semantic abuses, policy misuses

Higher cost/latency,

adversarial risks

LLMs vs. Traditional Methods

Create Synthetic DNS Attack Traffic

Detect and Explain DNS Attack Traffic

Confuse Detector with Adversarial Traffic

LLMs for DNS: How Can LLMs be effectively used?

Create Synthetic DNS Attack Traffic

Detect and Explain DNS Attack Traffic

Confuse Detector with Adversarial Traffic

LLMs for DNS: How Can LLMs be effectively used?

DNS Abuse Taxonomy

DNS as tool or target for DDoS

Victim

Attacker Resolver Authoritative

server

Flooding

Reflection / Amplification

Redirection

Subversion

DNSSEC Abuse

DNS Abuse Taxonomy

Flooding

Reflection

/Amplification

Redirection

Subversion

DNSSEC Abuse

Abuse Type Description Related DDoS Vector

Sending excessive DNS queries

to exhaust server resources

Exploiting resolvers to reflect

and amplify traffic toward a victim

Manipulating DNS responses to

redirect traffic (e.g., to a botnet controller)

Compromising domain registration

or zone control to manipulate traffic

Abusing DNSSEC’s large responses or

misconfigurations to overwhelm systems

Direct DDoS,

Resource exhaustion

Amplification DDoS

Indirect DDoS,

Traffic Manipulation

Indirect DDoS,

Traffic Manipulation

Amplification DDoS,

Resource exhaustion

DNS Abuse Taxonomy

Abuse Type Description Related DDoS Vector

DNSSEC

Abuse

Flooding

Reflection

/Amplification

Redirection

DNS

Subversion

Response Flooding

NXDOMAIN Flooding

(slow drip, random subdomain)

iDNS

TsuNAME

Unchained

NXNS Attack

NRDelegation Attack

Loop Attack

Query Flooding Kaminsky Attack

DNS Cache Poisoning

SAD DNS

Domain Hijacking

Packet Interception

DNS Tunneling

Fast Flux

DGA (Malware C2 Infra)

DNSSEC Amplification

NSEC/NSEC3 Walking

Bogus DNSSEC Data Injection

Algorithm Downgrade Attack

Class Subclass Class Subclass

Resolution Failure Flooding

(domain lock-up,

phantom subdomain)

DNS Abuse Taxonomy

Abuse Type Description Related DDoS Vector

DNSSEC

Abuse

Flooding

Reflection

/Amplification

Redirection

DNS

Subversion

Response Flooding

NXDOMAIN Flooding

(slow drip, random subdomain)

iDNS

TsuNAME

Unchained

NXNS Attack

NRDelegation Attack

Loop Attack

Query Flooding Kaminsky Attack

DNS Cache Poisoning

SAD DNS

Domain Hijacking

Packet Interception

DNS Tunneling

Fast Flux

DGA (Malware C2 Infra)

DNSSEC Amplification

NSEC/NSEC3 Walking

Bogus DNSSEC Data Injection

Algorithm Downgrade Attack

Class Subclass Class Subclass

Resolution Failure Flooding

(domain lock-up,

phantom subdomain)

DNS Abuse Taxonomy

Attack Name Key Characteristics Traffic Features
Traffic

Generation

LLM

Detectability

Deception

Risk

NXDOMAIN

Flooding

Random/non-existent

Subdomains

RCODE(3)_ratio ↑
query_rate_and_entropy ↑

unique_qname_count ↑
qname_dist_entropy_norm ↑

Easy High Moderate

dns_attack_taxonomy.json

- Class / SubClass

- Explanation

- Feature_Conditions

- Example_Instance

RAW (.pcap)

dns_extractor.py

compute_features.py

llm_formatter.py

FLAN-T5

Model

dns_llm_train.json

dns_llm_val.json
 > input_text: prompt

 > target_text:

 structured JSON

From

data

collection

…

Knowledge Base

(Protocol + Attack knowledge)

Gradio Web UI

app_dns_t5.py

train_t5.py

predict_t5.py

cluster.py

DNS Abuse Detection WorkFlow

Input Model Output

Which datasets/features?
Which LLM family/version?

How you’ll feed data?

What you want back?

DNS Abuse Detection WorkFlow

Input

Input Models

- Benign traffic:

 > OPENINTEL datasets (ground baseline)

- Attack traffic:

> Open-source attack datasets

- Traffic Generators + LLM-augmentation

> Flamethrower

 > Scapy, TRex, MoonGen

(Optional)

 Q. Traffic logs from DNS Operators?
Which datasets/features?

Public

Datasets

Synthetic

Attack

Datasets

Adversarial

Traffic

Datasets

DNS

Server

Logs

Input

Input Models

Which datasets/features?

Public

Datasets

Adversarial

Traffic

Datasets

DNS

Server

Logs

- Traffic Generators + LLM-augmentation

> Flamethrower

 > Scapy, TRex, MoonGen

- Benign traffic:

 > OPENINTEL datasets (ground baseline)

- Attack traffic:

> Open-source attack datasets

Synthetic

Attack

Datasets

(Optional)

 Q. Traffic logs from DNS Operators?

Input

Input Models

Which datasets/features?

RAW (.pcap)

dns_extractor.py

llm_formatter.py

compute_features.py

STD_COLS (Local Features)

frame.time_epoch, ip.src, ipv6.src,

dns.flags.response, dns.qry.name, dns.resp.name,

dns.resp.ttl, dns.resp.len, dns.flags.rcode,

dns.count.answers, dns.count.add_rr,

udp.length, frame.len

Input

Input Models
Outputs for DNS analysis

and LLM prompting:

--mode packet

Fine-grained per-packet context

+ file-level aggregates

--mode window

Sliding-window aggregaton over

--window seconds;

 > Per-window featuresWhich datasets/features?

RAW (.pcap)

dns_extractor.py

llm_formatter.py

compute_features.py

Input

Input Models

Which datasets/features?

RAW (.pcap)

dns_extractor.py

llm_formatter.py

compute_features.py

Converts ‘features.csv’ into JSONL

for T5 training or inference prompts

--mode infer

Build/keep ‘input_text,’

append schema suffix, and write

all prompts to ‘out_val’

--mode train

Requires ‘label’;

performs safe train/val split

Use taxonomy to build ‘target_text’

LLM Models

Type Models Key Characteristics

Decoder-

only

Encoder-

only

Encoder-

Decoder

We need “ Classification + Explanation + Generation + … ”

Model

Strong at log/query generation

Autoregressive: predicts next token sequentially

Less suitable for classification/detection tasks

GPT-

Family,

LLaMA

BERT-,

Family

T5,
BART,

UL2

High accuracy in detection/classification

Cannot generate outputs;

Limited explanatory power

Supports detection, explanation, and generation

Larger parameter size / higher computational cost
Which LLM family/version?

How you’ll feed data?

LLM Models

T5: Text-to-Text Transfer Transformer

Model

Which LLM family/version?

How you’ll feed data?

Which LLM family/version?

How you’ll feed data?

LLM Models

Model T5 Training & Inference Scripts

train_t5.py

Fine-tunes T5 on DNS prompts/targets

with robust metrics

Tokenizer/Model: AutoTokenizer,

AutoModelForSeq2SeqLM

predict_t5.py

Batch-generated normalized single-line

JSON per input

FLAN-T5

Model

train_t5.py

predict_t5.py

app_dns_t5.py

LLM Models

Model

Which LLM family/version?

How you’ll feed data?

Self-attention

Cross-attention

12x

Encoder

12x

Decoder

Formmated DNS Log

JSON token

sequence
T5-Base Model
 large

 small

 …

LLM Models

- Knowledge base as RAG:

> Up-to-date data reasoning from RFCs

and attack reports

Model

Which LLM family/version?

How you’ll feed data? Flan-T5

Knowledge Base
search

retrieve

- DNS attack taxonomy for LLM Inference:

dns_attack_

taxonomy.json

kb_rfcs.json

kb_attacks.json

Output Models

What you want back?

PCAP to Inference: End-to-End Demo

 - Gradio Web UI

Summary Card (Gradio HTML):

 - Class

 - Subclass

 - Score

 - Explanation

 - Mitigation

CSV (labelled):

per-row + final aggregated label

FLAN-T5

Model

train_t5.py

predict_t5.py

app_dns_t5.py

Output

Output Models

What you want back?

PCAP to Inference: End-to-End Demo

- Grafana/Prometheus

Prometheus:

 - exports/metrics (port: 9108);

Grafana Panels:

 - dns_pipeline_seconds

 - dns_label_ratio

 - dns_final_score

 - dns_nxdomain_ratio …

FLAN-T5

Model

train_t5.py

predict_t5.py

app_dns_t5.py

Output

Future Work

Short-term: Datasets, Benchmarking
 > Benchmark diverse DNS datasets

 > Compare across model families (Traditional MLs vs. LLMs)

Mid-term: Develop a Synthetic / Adversarial Traffic Framework
 > Adversarial Robustness Testing

 > Improve Trustworthiness

Long-term: Towards Operator-grade Deployment

Simple DEMO (3m)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

