ENUM and confidentiality

Florian Weimer <fweimer@bfk.de>
BFK edv-consulting GmbH

2nd OARC Workshop, November 2006

Outline

Introduction to ENUM

Risks inherited from DNS

Zone enumeration

DNS cache snooping

Outline

Introduction to ENUM

Risks inherited from DNS

Zone enumeration

DNS cache snooping

Phone numbers and Internet resources

- Success of end-to-end VoIP seemed to require:
 - integration of traditional touch-tone phones,
 - support of existing processes based on phone numbers,
 - rerouting of PSTN calls over IP networks.
- ▶ A service that maps phone numbers to URIs can
 - enable touch-tone phones to address IP services,
 - add new meanings to phone numbers (for example, RFC 2822 mailboxes),
 - routing information (in the form of SIP or H.323 URIs).

The ENUM mapping service

- Basic algorithm is as follows:
 - Reverse the phone number.
 - Split it into digits (which become individual DNS labels).
 - ▶ Add some suffix to form a full domain name.
 - Use DNS to map this name to NAPTR RRs.
 - The NAPTR RRs contain regular expressions, rewriting the phone number into URIs.
- ▶ e164.arpa is the root of the official ENUM tree.
- Example:
 - $+49721962011 \rightarrow 1.1.0.2.6.9.1.2.7.9.4.e164.arpa$

The ENUM mapping service (2)

- ► ENUM fits quite nicely into the DNS architecture.
- ▶ DNS provides a highly available distributed database at very low cost.
- ▶ Delegation is possible
 - at the country-code level,
 - for individual area codes,
 - for user-assigned numbers and number blocks.
- ▶ Incremental dialing is possible in principle, but high query rate is feared (and prevented by typical regexp usage).

ENUM on DNS: the downsides

- DNS scores highly on availability, but poorly on integrity and confidentiality.
 Telephony sorvices have particularly high integrity and confidentiality.
- Telephony services have particularly high integrity and confidentiality requirements.
 - ► Eavesdropping on phone calls is clearly illegal in most countries.
 - Call data records (who calls who and when?) are strongly protected in many countries.
 - ▶ Even the subscriber list needs to be kept private in some jurisdictions.
- Integrity is addressed by DNSSEC (currently at the cost of confidentiality of the subscriber list).
- ► Confidentiality?

ENUM on DNS: no opt-out

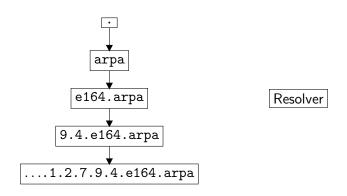
- ► ENUM-enabled callers will consult DNS
 - even if you have not registered an ENUM domain for your phone numbers,
 - even if your country code has not been delegated from e164.arpa.
- ► This means that some of your call records have already been exposed to the domain name system.
- ► To some degree, you need to implement this technology to prevent its use.

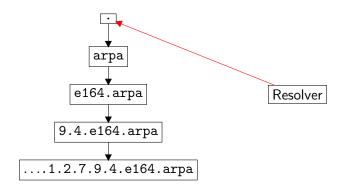
Outline

Introduction to ENUN

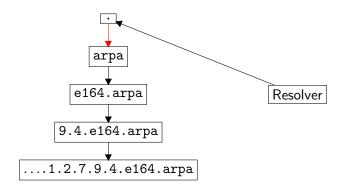
Risks inherited from DNS

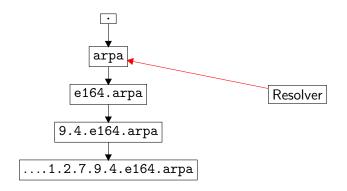
Zone enumeration

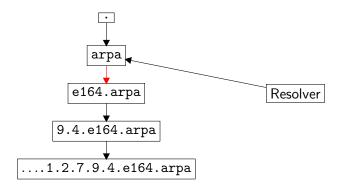

DNS cache snooping

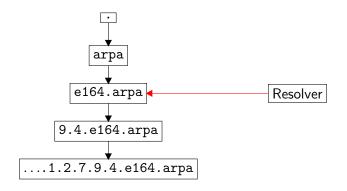

DNS as a risk

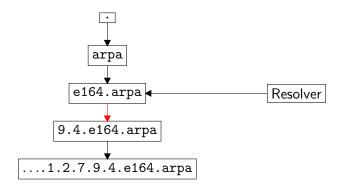
- protocol weaknesses (16 bit message ID, no cryptography)
- protocol complexity (which servers are authoritative for what data?)
- implementation quality
 - the usual suspects, such as buffer overflows
 - errors due to protocol complexity and ambiguity
- However, DNS is apparently good enough to power a multi-billion-dollar industry.

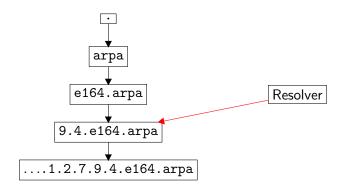


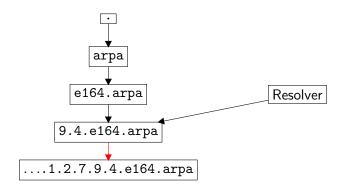


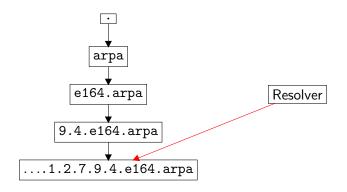


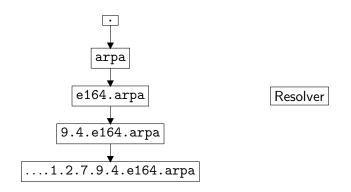


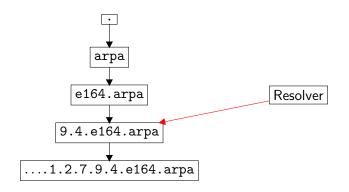




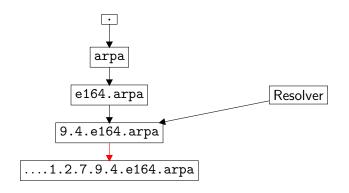




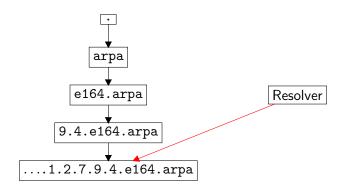




Warm cache behavior (country code delegation cached)



▶ Warm cache behavior (country code delegation cached)



▶ Warm cache behavior (country code delegation cached)

▶ Warm cache behavior (country code delegation cached)

- Each authoritative server receives essentially the same query.
- ▶ The complete called number is included in each query.
- ➤ Once the country code delegation is cached, the data longer leaks to the e164.arpa servers.
- ► The e164.arpa servers are located in US, JP, SE, NL, CN are you sure no one is mining your calls?
- ▶ Maybe you should get that country code delegation after all.

Outline

Introduction to ENUN

Risks inherited from DNS

Zone enumeration

DNS cache snooping

Confidentiality of the subscriber list

- Phone numbers are personally identifiable information. Unlisted and unpublished phone numbers exist.
- ► Some e164.arpa registries operate WHOIS services which contain additional subscriber information (names, addresses).
- Registrars might share a business interest in keeping their market coverage secret.

Brute force zone enumeration

- ▶ The brute force approach needs about 10¹⁰ queries for the NANP.
- ► Factoring in knowledge of the numbering plan can reduce the necessary work by a significant factor.
- ► This is especially true for countries with variable area code length (Germany, for instance).
- ▶ The query volume is substantial. People would notice.
- ▶ But we can do much better.

DNS excursion: empty non-terminals

- Empty non-terminals are domain names which exist (because they have subdomains), but have no resource records associated with them.
- Example:
 - 9.4.e164.arpa exists (it has got NS and SOA records, at the very least),
 - ▶ so 4.e164.arpa exists as well, but there are no resource records for it.
- ▶ This definition is arbitrary. See RFC 4592 for some of the implications.

DNS excursion: queries for empty non-terminals

- Queries for empty non-terminals just return an empty record set, not an error.
- ▶ On the other hand, a *Name Error* means that the domain does not exist, *including all of its potential subdomains*.
- ► This means it is possible to detect the presence and absence of entire subtrees in the DNS.

- ▶ Start with some country code delegation:
 - ▶ 9.4.e164.arpa

- No interesting data, so look at the subdomains.
 - ▶ 0.9.4.e164.arpa
 - ▶ 1.9.4.e164.arpa
 - ▶ 2.9.4.e164.arpa
 - ▶ 3.9.4.e164.arpa
 - ▶ 4.9.4.e164.arpa
 - ▶ 5.9.4.e164.arpa
 - ▶ 6.9.4.e164.arpa
 - ▶ 7.9.4.e164.arpa
 - ▶ 8.9.4.e164.arpa
 - ▶ 9.9.4.e164.arpa

- No interesting data, so look at the subdomains.
 - 0.9.4.e164.arpa does not exist
 - ▶ 1.9.4.e164.arpa
 - 2.9.4.e164.arpa
 - 3.9.4.e164.arpa
 - ▶ 4.9.4.e164.arpa
 - ▶ 5.9.4.e164.arpa
 - ▶ 6.9.4.e164.arpa
 - ▶ 7.9.4.e164.arpa
 - ▶ 8.9.4.e164.arpa
 - ▶ 9.9.4.e164.arpa

► Continue with one of the remaining domains, e.g. 1.9.4.e164.arpa:

- ▶ 0.1.9.4.e164.arpa
- ▶ 1.1.9.4.e164.arpa
- ▶ 2.1.9.4.e164.arpa
- ▶ 3.1.9.4.e164.arpa
- ▶ 4.1.9.4.e164.arpa
- ▶ 5.1.9.4.e164.arpa
- ▶ 6.1.9.4.e164.arpa
- ▶ 7.1.9.4.e164.arpa
- ▶ 8.1.9.4.e164.arpa
- ▶ 9.1.9.4.e164.arpa

► Continue with one of the remaining domains, e.g. 1.9.4.e164.arpa:

```
0.1.9.4.e164.arpa – does not exist
```

- ▶ 1.1.9.4.e164.arpa does not exist
- 2.1.9.4.e164.arpa does not exist
- ▶ 3.1.9.4.e164.arpa does not exist
- ▶ 4.1.9.4.e164.arpa does not exist
- ▶ 5.1.9.4.e164.arpa
- ▶ 6.1.9.4.e164.arpa
- ▶ 7.1.9.4.e164.arpa
- ▶ 8.1.9.4.e164.arpa
- ▶ 9.1.9.4.e164.arpa does not exist

- ► Continue with one of these:
 - ▶ 5.1.9.4.e164.arpa
 - ▶ 6.1.9.4.e164.arpa
 - ▶ 7.1.9.4.e164.arpa
 - ▶ 8.1.9.4.e164.arpa
- And so on.

Enumeration experiments

Experimental data:

CC	Domains	Queries	Seconds
+43	5,802	97,351	344
+49	6,876	279,281	1,005
+971	1	21	2

(Timing information is for a crude, multi-threaded Perl implementation running on a cheap, consumer-grade ADSL line.)

- ► Highly parallelizable.
- ► Efficiency (queries per actually used domain) increases with the density of the registrations.

Countermeasures

- ▶ Never return *Name Error* (but preserve the wildcard semantics).
- ► NSEC3 (DNSSEC without trivial zone enumeration) seems to expose subtree existence even without explicit RCODEs.
- ► Synthetic records can likely be detected easily.

Outline

Introduction to ENUM

Risks inherited from DNS

Zone enumeration

DNS cache snooping

DNS Cache Snooping

- Basic idea:
 - Query recursive resolvers without requesting recursion.
 - ▶ Resolvers return whatever data they have in their caches.
- ► Together with the original TTL, the time of the first request (that is, the phone call) can be established.
- ► Cache snooping works well for regular domains, too.

Cache Snooping and ENUM

- ▶ Only the called party is revealed.
- ▶ However, the location of the resolver might provide a hint to the caller.
- ▶ The enumeration algorithm described above does not work.
 - During regular operations, the required Name Error responses do not enter the cache.
- ► Thanks to negative caching, it does not matter if the called party has registered a ENUM domain.

Cache Snooping and ENUM

- ▶ Only the called party is revealed.
- ► However, the location of the resolver might provide a hint to the caller.
- ▶ The enumeration algorithm described above does not work.
 - During regular operations, the required Name Error responses do not enter the cache.
- ► Thanks to negative caching, it does not matter if the called party has registered a ENUM domain.

Countermeasures

- Make your resolvers authoritative for the ENUM domains (the zones are public anyway, see above).
- ▶ Use a dedicated full-service resolver for each ENUM-enabled device.
- ► Anycasting, load-balancing, and not providing DNS resolver services to the whole word may make the attacker's job harder.
- ▶ With filtered non-recursive queries, information still leaks through timing differences.

Summary

- ▶ It is possible to enumerate ENUM zones with reasonable effort.
- Caching DNS resolvers may leak call-related information once the caller uses ENUM.
- ▶ Nevertheless, it is desirable to obtain at least a country-code delegation to contain some of the data leaks.

Thank you for your attention!

Questions?

