

A Peer-to-Peer DNS

Ilya Sukhar

Venugopalan Ramasubramanian

Emin Gün Sirer
Cornell University

What’s wrong with DNS?

 Failure Resilience
 Delegation Bottlenecks
 Physical Bottlenecks

 Performance
 Latency tradeoff
 Misconfiguration & Load Imbalance

Failure Resilience – Delegation
Bottlenecks

 75% of domains are served by only two nameservers. Not a
reflection of popularity – 62.8% in Top 500 have the same
problem

1 2 3 4 5 6 7 8 9 10 11 12 13+
0

25

50

75

100

0.37

74.7

9.54

4.53
1.37 0.34 0.1 0.05 0.09 0 0.02 0

3.91

Nameserver Bottlenecks

number of bottleneck nameservers

n
a
m

e
s
 (

%
)

Failure Resilience – Physical
Bottlenecks

 Majority of domains are physically bottlenecked at a
single gateway or router

 Delegation redundancy is deceiving – many backup
nameservers reside in the same subnet.

1 2 3 4 5 6 7+
0

15

30

45

60

75

52.26

34.51

8.25

2.3 0.91 0.64 0.96

Network Bottlenecks

number of bottleneck links

n
am

es
 (

%
)

Performance – Latency

 Lookups are expensive
 ~20-40% of web object retrieval time spent on

DNS
 ~20-30% of DNS lookups take more than 1s

 [Jung et al. 01, Huitema et al. 00, Wills & Shang 00,
Bent & Voelker 01]

The Problems

 Failure Resilience
 Delegation and physical bottlenecks make

attractive DDoS targets

 Latency
 Dilemma of choosing between lookup

performance and update propagation.
 Timeout driven caching isn’t effective. Short TTL’s

impose enormous overhead and drastically reduce
cache hit rates.

 Static Hierarchy
 Load imbalance, points of failure

Our Approach

 Built on top of structured Distributed Hash
Tables (DHTs)
 Self organizing
 Failure resilient
 Scalable
 Good performance

DHTs 101

 Pastry
 Map all nodes onto

common identifier space
 Map all objects onto the

same space using a key
(for DNS, the name).

 logbN hops to travel the
ring
 Several round trips on

the Internet – not so
great, right?

0122

object 0121
hash(“www.cnn.com”) = 0121

2012

0021

0112

CoDoNS

 Adjusting the level of
replication allows us to
bound the latency of any
lookup.
 As always, must find the

optimal point in the space-
time tradeoff.

 How?
 Use good mathematical

properties of DNS query
distribution

 Key intuition: we can do this per-
object based on popularity and
properties of our distribution!

2012

0021

0112

0122

CoDoNS

 In CoDoNS, each object is replicated at some
level i.
 Object is stored on all nodes with i matching

prefixes and looking it up requires at most i hops
in the ring.

Performance

• Problem reduces to minimizing the level of caching such that
average lookup performance remains under some constant
bound C.

– i = 1 for all objects yields O(1) lookups! Obviously not such a great idea.

• Lots of math leads us to a single, closed form solution to the
optimization problem.

1

1

log 1

1

(log)

1 ...

base of DHT

 number of nodes in ring

fraction of objects replicated at level i

i

i N

i

d N C
x

d d

d b

b

N

x

α

α
α

−

−

−

−=
+ + +

=
=
=
=

What’s the Big Deal?

1. Provides strict guarantee of average lookup
latency

 Can achieve desired cache hit rate. C = .5 is perfectly

feasible.

2. Utilizes as little bandwidth and space as possible
despite constant time lookups.

3. Balances load – objects are replicated based on
popularity.

4. Resilient against failures.

5. Update propagation is easy when each object’s
location is described by a single level i.

Implementation Details

 Namespace management and query resolution are
two different things.
 We improve the latter and don’t touch the former.
 For name owners, CoDoNS is insert, delete, and update

and nothing more. For end users, CoDoNS is a resolver.
 Name hierarchy, administrative policies, politics, domain

sales? We’re agnostic.

 CoDoNS serves the exact same namespace with
the exact same interface.

Implementation Details
 Caching and authoritative services

 Caching: All names not explicitly inserted are resolved via
traditional methods. Once inserted, only a single home
node polls legacy DNS for updates. No undue stress is put
upon existing systems.
 Initial insertion is checked for validity at multiple locations and then

signed by our private key.

 Authoritative: Domain is delegated to nsXX.codons.net
 Security Model

 If you believe in DNSSEC, you (should) believe in CoDoNS.
 Malicious or compromised nodes are not an issue unless the

private key is stolen in which case you probably have bigger
problems.

Bottom Line

 Serves two functions
 Caching / safety net for

legacy DNS
 Authoritative name service

 Name hierarchy independent
of server heirarchy

 Name delegations
independent of server
requirements

 Fully transparent and
compatible with legacy DNS

Legacy
DNS

Our Current Deployment

 PlanetLab
 Global Consortium for

“developing, deploying,
and accessing planetary-
scale services.”

 Translation: Access to
many high powered
boxes on fat pipes at
universities and research
labs.

 700+ nodes at 300+
sites.

Real World Performance

 Trace from MIT nameservers.
 12 hours, December 2000.
 ~300k queries, ~50k domains.

 Most significant result: very fast average time
for lookups!

Fast Lookups

213 ms337 ms90th %
199 ms382 msmean

2 ms39 msmedian

CoDoNSLegacy
DNS

Electoral-Vote.com

 Peak: Nov 1st-8th
 Over 1 mil queries per day.
 Nobody bothered/dared to DDoS.
 No downtime.

Andy Tanenbaum’s side project –

a demanding first customer. In

2004, experienced malicious

DDoS on nameservers. Back for

revenge.

Conclusion
 Proactive caching based on analytical models

derived from query distribution leads to strong
bounds on lookup times.
 Low latency, efficient updates, self-configuring, real

redundancy, etc.
 We’re looking to partner with ISPs and DNS

providers to host CoDoNS nodes.
 We’re willing to host or backup your DDoS prone

names.
 Any questions?

 http://www.cs.cornell.edu/people/egs/beehive/
 {ilya, egs}@systems.cs.cornell.edu

