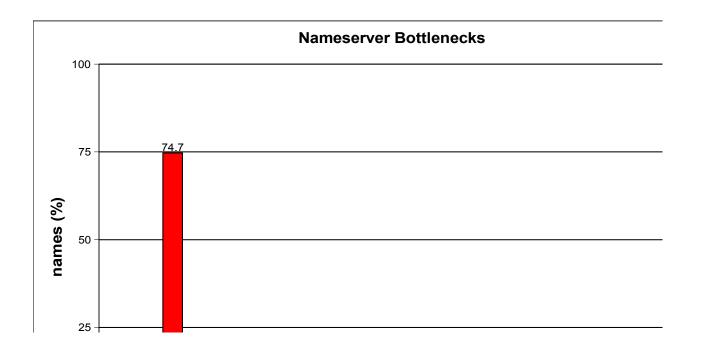
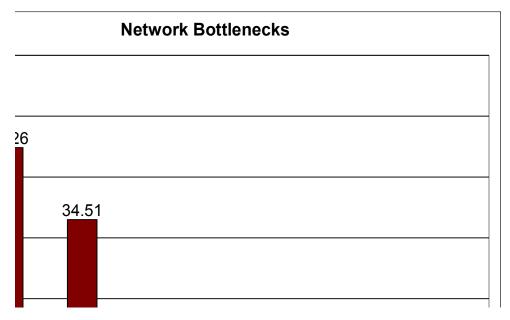
A Peer-to-Peer DNS

Ilya Sukhar Venugopalan Ramasubramanian Emin Gün Sirer Cornell University


What's wrong with DNS?

- Failure Resilience
 - Delegation Bottlenecks
 - Physical Bottlenecks
- Performance
 - Latency tradeoff
 - Misconfiguration & Load Imbalance

Failure Resilience – Delegation Bottlenecks


 75% of domains are served by only two nameservers. Not a reflection of popularity – 62.8% in Top 500 have the same problem

Failure Resilience – Physical Bottlenecks

- Majority of domains are physically bottlenecked at a single gateway or router
- Delegation redundancy is deceiving many backup nameservers reside in the same subnet.

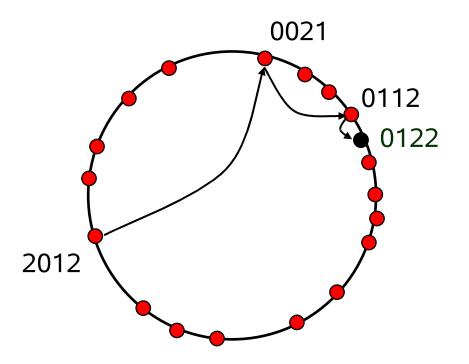
Performance – Latency

- Lookups are expensive
 - ~20-40% of web object retrieval time spent on DNS
 - ~20-30% of DNS lookups take more than 1s
 - [Jung et al. 01, Huitema et al. 00, Wills & Shang 00, Bent & Voelker 01]

The Problems

- Failure Resilience
 - Delegation and physical bottlenecks make attractive DDoS targets
- Latency
 - Dilemma of choosing between lookup performance and update propagation.
 - Timeout driven caching isn't effective. Short TTL's impose enormous overhead and drastically reduce cache hit rates.
- Static Hierarchy
 - Load imbalance, points of failure

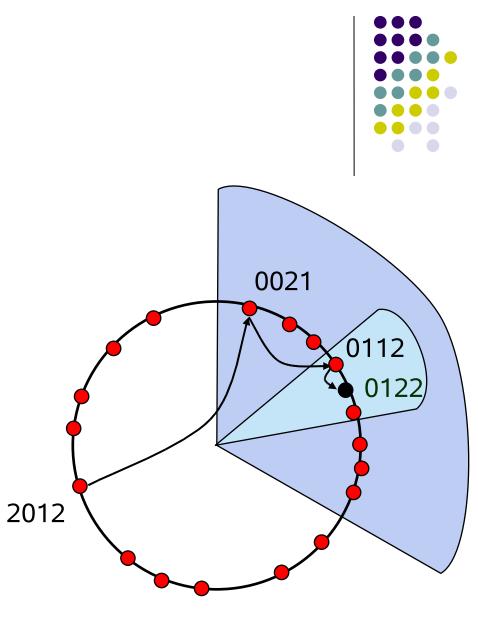
Our Approach


- Built on top of structured Distributed Hash Tables (DHTs)
 - Self organizing
 - Failure resilient
 - Scalable
 - Good performance

DHTs 101

Pastry

- Map all nodes onto common identifier space
- Map all objects onto the same space using a key (for DNS, the name).
- log_bN hops to travel the ring
 - Several round trips on the Internet – not so great, right?



CoDoNS

- Adjusting the level of replication allows us to bound the latency of any lookup.
 - As always, must find the optimal point in the space-time tradeoff.

• How?

- Use good mathematical properties of DNS query distribution
- Key intuition: we can do this perobject based on popularity and properties of our distribution!

CoDoNS

- In CoDoNS, each object is replicated at some level i.
 - Object is stored on all nodes with i matching prefixes and looking it up requires at most i hops in the ring.

Performance

• Problem reduces to minimizing the level of caching such that average lookup performance remains under some constant bound C.

-i = 1 for all objects yields O(1) lookups! Obviously not such a great idea.

• Lots of math leads us to a single, closed form solution to the optimization problem.

$$x_{i} = \frac{d^{i}(\log N - C)}{1 + d + \dots + d^{\log N - 1}} \overset{\frac{1}{1 - \alpha}}{d}$$
$$d = b^{\frac{1 - \alpha}{\alpha}}$$

b = base of DHT

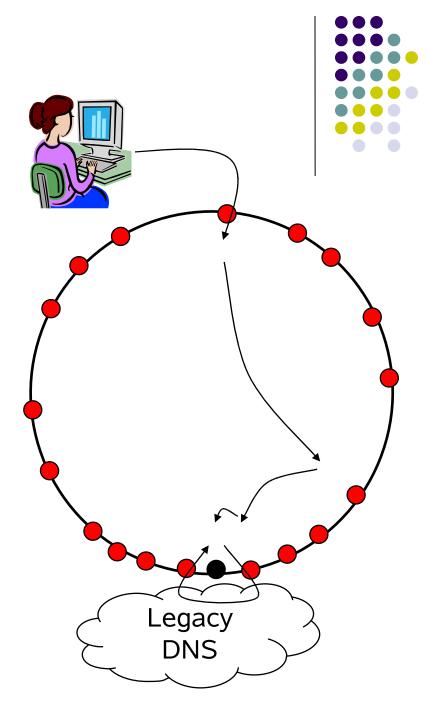
- N = number of nodes in ring
- x_i = fraction of objects replicated at level i

What's the Big Deal?

- 1. Provides strict guarantee of average lookup latency
 - Can achieve desired cache hit rate. C = .5 is perfectly feasible.
- 2. Utilizes as little bandwidth and space as possible despite constant time lookups.
- Balances load objects are replicated based on popularity.
- 4. Resilient against failures.
- 5. Update propagation is easy when each object's location is described by a single level i.

Implementation Details

- Namespace management and query resolution are two different things.
 - We improve the latter and don't touch the former.
 - For name owners, CoDoNS is insert, delete, and update and nothing more. For end users, CoDoNS is a resolver.
 - Name hierarchy, administrative policies, politics, domain sales? We're agnostic.
- CoDoNS serves the exact same namespace with the exact same interface.


Implementation Details

- Caching and authoritative services
 - Caching: All names not explicitly inserted are resolved via traditional methods. Once inserted, only a single home node polls legacy DNS for updates. No undue stress is put upon existing systems.
 - Initial insertion is checked for validity at multiple locations and then signed by our private key.
 - Authoritative: Domain is delegated to nsXX.codons.net
- Security Model
 - If you believe in DNSSEC, you (should) believe in CoDoNS.
 - Malicious or compromised nodes are not an issue unless the private key is stolen in which case you probably have bigger problems.

Bottom Line

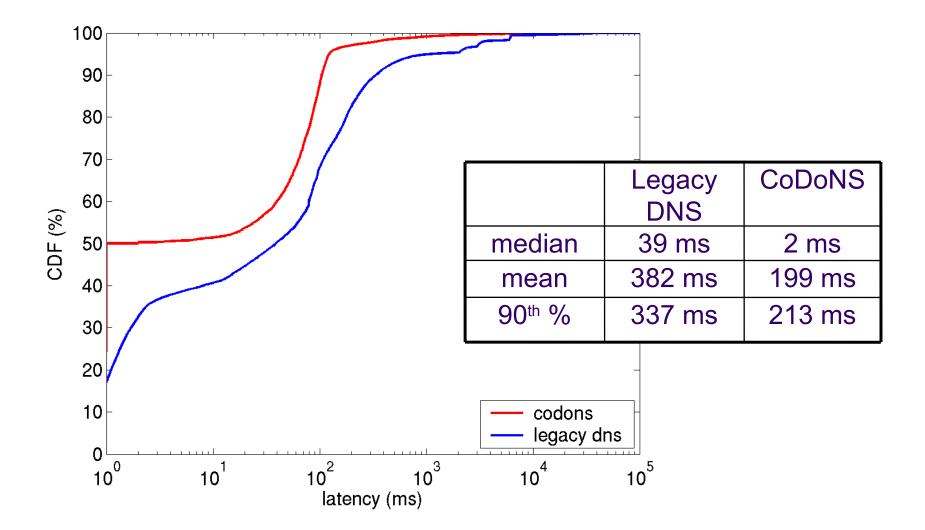
- Serves two functions
 - Caching / safety net for legacy DNS
 - Authoritative name service
- Name hierarchy independent of server heirarchy
- Name delegations independent of server requirements
- Fully transparent and compatible with legacy DNS

Our Current Deployment

PlanetLab

- Global Consortium for "developing, deploying, and accessing planetaryscale services."
- Translation: Access to many high powered boxes on fat pipes at universities and research labs.

 700+ nodes at 300+ sites.


Real World Performance

- 12 hours, December 2000.
- ~300k queries, ~50k domains.
- Most significant result: very fast average time for lookups!

Fast Lookups

Electoral-Vote.com

Andy Tanenbaum's side project –

a demanding first customer. In

2004, experienced malicious

DDoS on nameservers. Back for revenge.

- Peak: Nov 1st-8th
 - Over 1 mil queries per day.
 - Nobody bothered/dared to DDoS.
 - No downtime.

Conclusion

- Proactive caching based on analytical models derived from query distribution leads to strong bounds on lookup times.
 - Low latency, efficient updates, self-configuring, real redundancy, etc.
- We're looking to partner with ISPs and DNS providers to host CoDoNS nodes.
- We're willing to host or backup your DDoS prone names.
- Any questions?
 - http://www.cs.cornell.edu/people/egs/beehive/
 - {ilya, egs}@systems.cs.cornell.edu

