

Malware Repository Update

David Dagon
Georgia Institute of Technology

dagon@cc.gatech.edu

Context

• OARC is contemplating the operation of a
malware repository

• I report on the implementation of this
repository
– Design rationale
– Demo
– Other developments that I trust may be

received as good news
• These slides expand on a previous talk w/

Paul Vixie at Defcon
– Errors in both are my own

Overview

• How malware is collected and shared now
• Malfease’s service-oriented repository

– Automated unpacking
– Header analysis

• Demonstration
• Policy considerations for OARCs

operation

Current Practices

• Numerous private, semi-public malware
collections
– Need trust to join (for some value of “trust”)
– “Too much sharing” often seen as competitive

disadvantage
– Quotas often used

• Incomplete collections: reflect sensor bias
– Darknet-based collection
– IRC surveillance
– Honeypot-based collection

Shortcomings

• Malware authors know and exploit
weaknesses in data collection

• Illuminating sensors
– “Mapping Internet Sensors with Probe Response

Attacks”, Bethencourt, et al., Usenix 2005

• Automated victims updates
– “Queen-bot” programs keep drones in 0-day

window

Queen-Bot Programs

• Malware authors use packers
– Encrypted/obfuscated payloads
– Small stub programs to inflate the payload

• Queen bots
– Automate the creation of new keys, binaries
– Each new packed program is different

• But the same semantic program
– Compiler tricks used

• Dead code injected, idempotent statements
introduced, register shuffling, etc.

Queen-Bot Programs

Queen-Bot Programs

• Queen bots therefore an instance of
generative programming

• What are their uses?
– Automated updating
– Evasion of AV signatures

• How do they evade AV?
– We need a rough conceptual model of malware

lifecycle …

Queen-Bot Programs:
Indirect Evidence

Malware Life Cycle

A-day 0-day D-day R-day

Four conceptual phases of malware life cycle:

A-day: malware authored
0-day: release
D-day: first opportunity for detection
R-day: response (e.g., virus signature update)

Malware Life Cycle

A-day 0-day D-day R-day

Recent AV goal: reduce response time

AV update cycles previously measured weeks/days

Now measured in hours/minutes (or should be)

Malware Life Cycle

A-day 0-day D-day R-day

How to improve detection time...

Given that...
 Malware authors avoid known sensors
 Repositories don’t share

Sensor Illumination

• Technique
– Malware authors compile single, unique virus;
– Send to suspected sensor
– Wait and watch for updates

Sensor Illumination

Virus

Malware Life Cycle

A-day 0-day D-day R-day

Because of illumination and limited sharing, distance
(0day, detection) is days, while distance (detection,
response) is (ideally) hours.

Minutes*Days*

* Average order of time; anecdotes will vary

Malware Life Cycle

A-day 0-day D-day R-day

MinutesDays

A-day 0-day D-day R-day

Bot runs for ~1/2 day, and updates to new, evasive binary

UPDATE!UPDATE!

Malware Life Cycle

A-day 0-day D-day R-day

MinutesDays

A-day 0-day D-day R-day

A-day 0-day D-day R-day

UPDATE!UPDATE!

UPDATE!UPDATE!

Malware Life Cycle

A-day 0-day D-day R-day

MinutesDays

A-day 0-day D-day R-day

A-day 0-day D-day R-day

PerpetualPerpetual
Zero-dayZero-day
windowwindow

UPDATE!UPDATE!

UPDATE!UPDATE!

Example from virustotal.com

Solution:
Service-Oriented Repository

• Malfease uses hub-and-spoke model
– Hub is central collection of malware
– Spokes are analysis partners

• Hub:
– Malware, indexing, search
– Static analysis: header extraction, icons,

libraries
– Metainfo: longitudinal AV scan results

• Spoke:
– E.g., dynamic analysis, unpacking

Malware Repo Requirements

• Malware repos should not:
– Help illuminate sensors
– Serve as a malware distribution site

• Malware repo should:
– Help automate analysis of malware flood
– Coordinate different analysts (RE gurus, MX

gurus, Snort rule writers, etc.)

Approach: Service-Oriented
Repository

• Repository allows upload of samples
– Downloads restricted to classes of users

• Repository provides binaries and analysis
– Automated unpacking
– Win32 PE Header analysis
– Longitudinal detection data

• What did the AV tool know, and when did it know it?

– Soon: Malware similarity analysis, family tree

Overview

Repository User Classes

• Unknown users
– Scripts, random users, even bots

• Humans
– CAPTCHA-verified

• Authenticated Users
– Known trusted contributors

Repository Access Goals

• Unknown users
– Upload; view aggregate statistics

• Humans
– Upload; download analysis of their samples

• Authenticated Users
– Upload; download all; access analysis

Basic User View

Analysis Page for Sample

Static Analysis Example

Static Analysis Example

Note search
ability

Example: Search on icons

All samples
with matching
icons

Dynamic Analysis

Unpacked binary
Available for Download,
Along with asm version

Binary Analysis (Spoke)
Example

• Motivation: find “key” information in
malware

• Previously, binaries trivially yielded relevant
information:
strings samples/*.exe | grep i \
gmail
0edcxzse @ gmail.com
d4rkhdeflood @ gmail.com

...

Binary Analysis (Spoke)
Example

• Now, however, malware is packed
– E.g., of 409 samples, 11% were trivially

unpackable.
• Indicates high degree of packing
• For 81 non-packed samples, only 7 contained

strings recognizable as mail addrs.

• Why such a low result for all samples?
– Implies runtime data transformations

Binary Analysis (Spoke)
Example

Address for WS2_32.dll:Send (and data
for email address) are constructed
dynamically

Spoke Example
trace_irc=> select distinct email
from abusive_email where email ilike
'%gmail.com';

 email

 0edcxzse@gmail.com
 0paparazzo@gmail.com
 100money@gmail.com
 1977.24@gmail.com
 1r4d3x@gmail.com
 2006.infos@gmail.com

 ...
etc. etc. etc.

Thus, malfease's
collection is
transformed
to operationally
relelvant
feeds

Policy Considerations

• Who gets access?
– Anonymous upload: limited analysis
– Registered upload: collection management
– Trusted researcher: full search/full analysis
– Does this approach meet OARC's approval?

• Branding (Spoke) opportunities
– Analysis partners may offer/demo analysis

services

Policy Consideration
• Resources

– All front-end code BSD licensed
• Spoke analysis tools may sport any license

– Hardware and development courtesy of
Damballa

• Coordination with other malware repos?
– MIRT/PIRT
– APWG

OARC Resources

• So far, no cost to OARC
– Hardware, dev work courtesy of Damballa

• We have until January 2007 to finish major work

• Needed OARC resources:
– Blessing/acceptance

• A review/edit of policies
– Mailing lists (one for dev, one for users)
– Possible mirror
– Feedback from members
– Malware (send samples!)

Conclusion

• Service-oriented repository
• See malfease.oarci.net for details
• Questions?

