Internet Topology Research

Matthew Luckie

WAND Network Research Group Department of Computer Science University of Waikato Internet Topology Why should we care?

- Impacts on the design and operation of routing protocols
- Understand choices in network design
- Some indication as to the efficiency of a route between two hosts

This talk

- Overview of topology measurement techniques
- Motivation to annotate captured data with reverse DNS entries
- Some results

Topology Measurement

- Playing games with traceroute(8)
 - IP topology
 - Discover peerings not visible with Routeviews
 - Observe structure of individual ASes
 - Rocketfuel: Neil Spring et al.
- Specialist projects for Internet-scale topology measurement
 - Skitter (CAIDA)
 - Archipelago + Scamper (CAIDA + WAND)
 - DIMES
 - Others; PlanetLab + ScriptRoute

Traceroute basics

- Series of TTL-limited probes
 - solicit ICMP Time Exceeded messages from routers on the path
 - ICMP message has original probe embedded, need to identify probe to know which TTL it is for
- UDP probes to high-numbered ports
 - each probe is identified by a unique destination port
- ICMP echo request probes
 - each probe is identified by ICMP sequence
- TCP SYN probes
 - each probe is identified by IP-ID

scamper

- Parallelised Internet measurement
 - takes a list of IP addresses
 - traceroute in parallel as required to fill a specified packets-per-second rate
- http://www.wand.net.nz/scamper/
 - code freely available

CAIDA Archipelago

- Measurement infrastructure distributed
 across the globe
- Probe with scamper for Internet topology
- Results are centrally collected and made available for further analysis

Challenges

- Traffic can look like scanning
- Redundant probing
- Load-balancing routers may break validity of traceroute output
- Translating IP topology to router topology

traceroute and abuse

- UDP probes to a series of high-numbered ports may appear as port scanning
 - Particularly when a destination or middlebox silently discards probes
 - UDP is the default traceroute method
- ICMP PING ATTACK!
- TCP probes to routers may be monitored by operators

Redundant probing

- The first few hops from a source are likely to be the same to any destination
- The last few hops to a destination are likely to be the same from most sources
- Solution: technique known as Doubletree
 - B. Donnet, T. Friedman, et al.
 - distributed measurement systems build a shared topology
 - systems begin probing somewhere in the middle where they are more likely to discover new links

Load Balancing

- Traditional UDP traceroute uses a different destination port to identify each probe
 - Routers may load balance based on 5-Tuple (src,dst IP / src,dst port / IP protocol)
 - May result in false IP links being reported
- Solution: paris traceroute
 - Augustin et al.
 - Identify probes using different UDP checksum value
 - Their recent work presents techniques to find all paths in a load balanced path

Router vs. IP topology

- Traceroute discovers interface IP addresses
- Routers have multiple interfaces
- Goal: IP topology to router topology
 - Resolve router aliases

Router Alias Resolution

- UDP probes to high-numbered ports
 - watch which ones get port unreachable from the same source IP address
 - Source: Pansiot and Grad
- Solicit responses from candidate address pairs, look for sequential IP-ID values

- Implemented in Ally (Spring et al.)

Router Alias Resolution

- DNS, similar names for each interface may indicate they belong to the same router
 - Rocketfuel (Spring et al.)
- Analytical Alias Resolution
 - Mehmet Gunes, Kamil Sarac
 - Point-to-point links tend to be allocated out of /30 or /31
 - Two different /30 or /31 pairs observed at adjacent hops are likely to be aliases for two routers: e.g.:

192.107.171.49	130.217.2.2
130.217.2.1	192.107.171.51

DNS and Topology Discovery

 Reverse DNS entries give some indication as to the role or location of each interface on a path

DNS and Topology Discovery

traceroute to cider.caida.org (192.172.226.123)
1 lo2.akl-grafton-bba2.ihug.net (203.109.128.167) 46.041 ms
2 gil-1.akl-grafton-bdr2.ihug.net (203.109.130.110) 48.862 ms
3 gi2-10.akl-grafton-bdr1.ihug.net (203.109.130.50) 178.426 ms
4 Gi15-2.gwl.akllasianetcom.net (203.192.166.41) 48.645 ms
5 po2-0.gwl.laxl.asianetcom.net (202.147.61.189) 185.788 ms
6 lax-cenic-equinix-exch.cenic.org (206.223.123.7) 185.832 ms
7 calren3-cust.lsanca01.transitrail.net (137.164.131.242) 183 ms
8 dc-lax-dc2--lax-dc1-ge--2.cenic.net (137.164.22.5) 184 ms
9 dc-tus-dc1--lax-dc2-pos.cenic.net (137.164.22.43) 185 ms
10 dc-sdsc-sdsc2--tus-dc1-ge.cenic.net (137.164.24.174) 190 ms
11 pinot.sdsc.edu (198.17.46.56) 202 ms
12 cider.caida.org (192.172.226.123) 187 ms

Auckland (Grafton bridge), NZL Los Angeles, CA Equinix Exchange, LA, CA Tustin, CA San Diego, CA

DNS and Topology Discovery

• **undns** (part of Neil Spring's Scriptroute) contains a database of DNS to location

4648 \.global-gateway\.net\.nz {
 \.([a-z]{2})[bcs][rw][0-9]\.global-gateway\.net\.nz\$ loc=1 {
 tk "Tokyo, Japan"
 ak "Auckland, NewZealand"
 sy "Sydney, Australia"
 sj "SanJose, CA"
 la "LosAngeles, CA"
 };
}

Goal

- Extend scamper to resolve IP to hostname mappings while probing, store in collected data files
- Use data to guide router alias resolution, guide location inference.

An aside: Comparing traceroute methods

- Multiple traceroute probing techniques exist
- UDP traceroute (traditional)

– Variation: UDP-paris

- ICMP echo traceroute
 - Variation: ICMP-echo-paris
- TCP SYN traceroute
 - Variation: parasitic traceroute (paratrace)

Comparing traceroute methods

- Single source, 3 different destination sets
 - Alexa 500: top 500 websites ranked by Alexa
 - Router 500: 500 random routers on path to these websites
 - Random 1703: 1703 random IP addresses in unique routeviews IP prefixes

Dataset #1: 428 webservers

	completed	unreach	Іоор	gaplimit
udp	178 (41.6%)	26	15	209
udp-paris	180 (42.1%)	27	9	212
icmp	322 (75.2%)	9	16	81
icmp-paris	327 (76.4%)	10	10	81
tcp (p 80)	405 (94.6%)	0	11	12

15 targets (3.5%) observed the same sequence of IP hops

Dataset #2: 500 random routers

	completed	unreach	Іоор	gaplimit
udp	288 (57.6%)	72	1	139
udp-paris	286 (57.2%)	73	1	140
icmp	392 (78.4%)	66	3	39
icmp-paris	394 (78.8%)	67	1	38
tcp (p 80)	273 (54.8%)	75	1	151

33 targets (6.6%) observed the same sequence of IP hops

Dataset #3: 1703 random IP addresses

	completed	unreach	Іоор	gaplimit
udp	108 (6.3%)	180	181	1234
udp-paris	111 (6.5%)	178	139	1275
icmp	174 (10.2%)	204	172	1156
icmp-paris	174 (10.2%)	206	135	1188
tcp (p 80)	152 (8.9%)	188	137	1226

609 targets (40.6%) observed the same sequence of IP hops

Comparing traceroute methods

- Initial observations:
 - UDP traceroute gives relatively poor results
 - ICMP-echo traceroute tends to give best