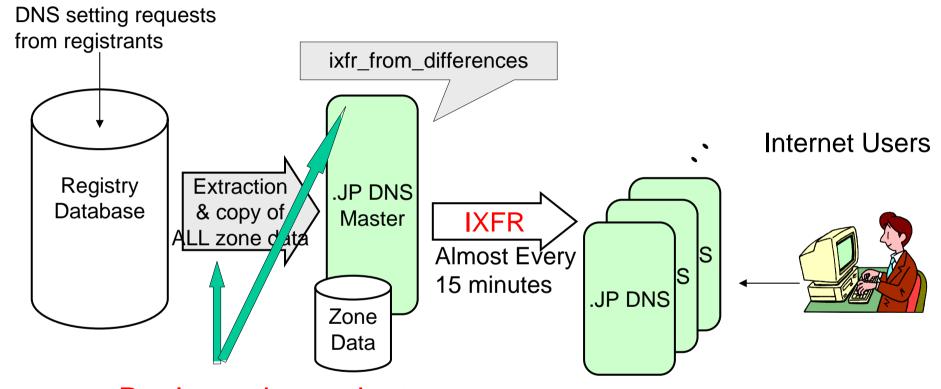


A Brief Introduction to JPRS DNSSEC Implementation Research for TLD

3rd DNS-OARC Workshop
Nov. 3, 2007
Japan Registry Services Co., Ltd. (JPRS)
Kentaro Mori <kentaro@jprs.co.jp>
Shinta Sato <shinta@jprs.co.jp>

Contents

- Background
- Requirements
- Design concepts
- Implementation
- Performance
- Field Test


Background

- Current status of .JP
 - A million of domain names
 - Frequent DNS updates (every 15 minutes)
 - Zone synchronization to 30 DNS servers (including IP anycast & stand-by servers)
- Issue regarding to implement DNSSEC
 - Zone data signing with existing tool (e.g. dnssecsignzone) takes longer time than our update interval
- JPRS decided to create a prototype implementation to solve this issue

Frequent DNS updates: Current .JP System

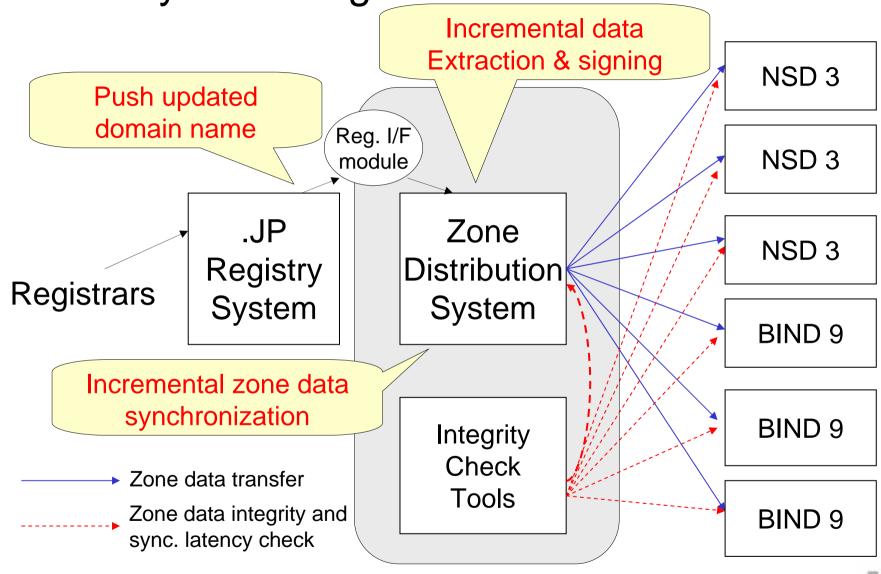
Bottle-necks against further update frequency & creating DNSSEC related RRs

Major Requirements Defined in R&D

- Large zone administration
 - 10 million-domain class
- Rapid updates
 - Data updates by every minute (on service operation)
 - 100 domains update is performed within 10 seconds
- Reliable zone data synchronization
 - Checking sync. delay time
 - Checking data integrity
- DNSSEC capability
 - Compliance to RFC4033-RFC4035
 - Compliance to both of NSEC & NSEC3
 - Key management (generation/rollover)

Design Concepts of the Prototype Implementation

- Easy integration to current Registry system
 - Least changes to Registry system
 - DNSSEC & related features are provided by the Prototype implementation
- RRset extraction from Registry database & DNSSEC signing in an incremental manner
 - For rapid updates of large zone
- Data integrity check of DNS servers without service interruption
 - Under rapid update environment


System Components

- Registry System (pseudo .JP/real .JP)
- 2. Zone Distribution System
- 3. Integrity Checking Tools
- 4. DNS servers (BIND 9, NSD 3)

System Diagram

Zone Distribution System

- 'Intelligent box' between Registry system and DNS servers
 - Incremental data extraction from .JP Registry system
 - Zone data distribution to DNS servers
 - Using IXFR/AXFR for BIND, NSD, etc.
 - Zone data revision management
 - Possible to obtain any #serial of zone data
 - For integrity check without service interruption
 - DNSSEC features (next slide)
- Implementation details
 - Developed from scratch by Java
 - PostgreSQL/Oracle/HSQL as backend DB

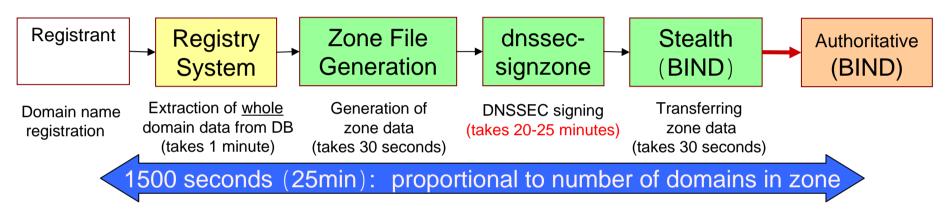
JAPAN REGISTRY SERVICES

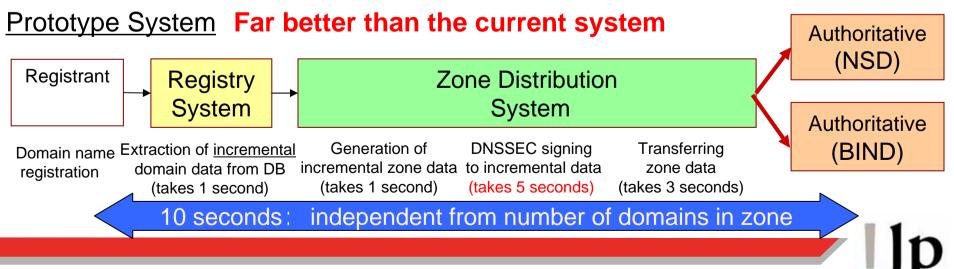
DNSSEC Features of Zone Distribution System

- Compliant to NSEC & NSEC3
- ZSK creation & RRset signing for all domains of Registry database on system initialization
- Incremental RRset signing according to the updates on Registry database
- Semi-automatic ZSK rollover & re-signing of RRsets
 - Semi-automatic means KSK private key needs to attach to the system manually for each time by security reason
 - When re-signing, old DNSKEYs / RRSIGs are deleted after appropriate time considering their TTLs

Integrity Checking Tools

- Zone synchronization latency check tool
 - Measures update latency of each DNS server from Zone Distribution System and checks if the latency is in allowable time frame
 - Designed for frequent & light-weight checking
- Full data integrity check tool
 - Verifies zone data synchronization between Zone Distribution System and each DNS server
 - Obtains complete zone data from each DNS server and compares with corresponding zone data in Zone Distribution System
 - Designed for periodic (ex. daily/weekly) & comprehensive checking

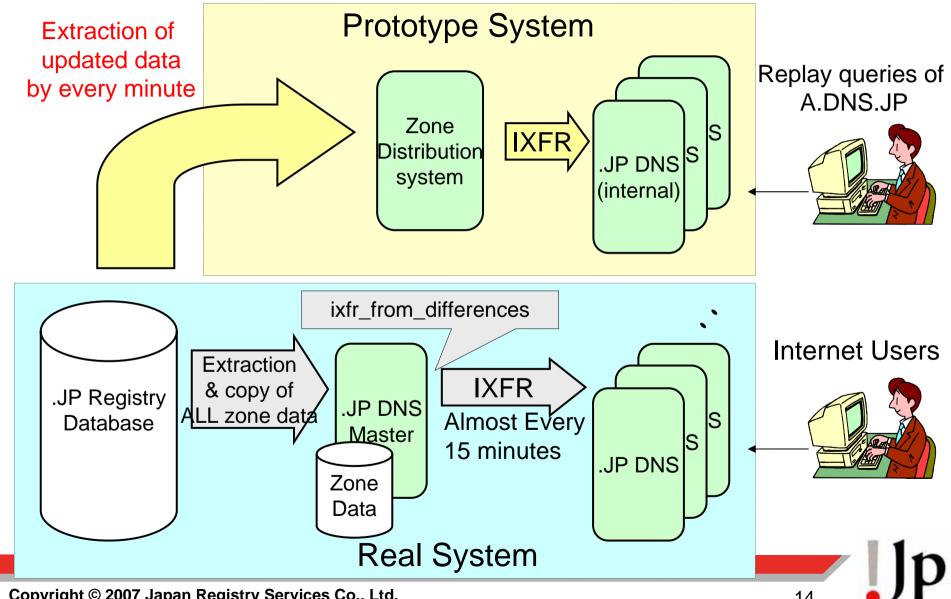




Update Performance: Comparing with Current System

In case of adding 100 domain to zone of 1 million domains, with DNSSEC signing

.JP registry System (current+DNSSEC)


Field Test of Prototype System

- Check following performances
 - Data update latency from .JP Registry database change
 - Data integrity of DNS servers after long term running
 - Without DNSSEC signing
 - Due to implementation problem at that time..
- Connected Zone Distribution System to real .JP Registry system for 1 month
 - Configured to pull out updated data every minute from .JP Registry database
- DNS servers were for internal test only
 - Placed in Tokyo & New York
 - Simulate queries from A.DNS.JP query log so that they had the same load as real .JP DNS servers

Field Test Scheme

System Integration needed for Field Test

- Modification to real .JP Registry System
 - Only added RDBMS trigger to .JP Registry database which generates updated domain names list
- Data import Java class of Zone Distribution System
 - To obtain incremental data from .JP Registry database according to the list
- Easy to integrate!
 - Relatively...

Field Test Results

- Average within 2 seconds of DNS data update latency from .JP Registry database change
 - If DNSSEC signing were done, it would be took 5 seconds or so?
- NO data inconsistency after 1 month running

Conclusions/Summary of the R&D

- JPRS Developed
 - Incremental data processing mechanism of .JP Registry updates, including DNSSEC signing/key management features
 - As Zone Distribution System
- The field test results satisfied
 - JP TLD requirements of large zone, rapid updates, reliable synchronization

Thank you!

