

Follow-up to Observations on Anycast Topology and Performance

Steve Gibbard Packet Clearing House

Original paper

- Observations on Anycast Topology and Performance
 - Presented at last OARC/DNS Ops meeting
- Looked at query distribution from several anycast systems
 - > J Root data from Verisign
 - K Root data from RIPE
 - > C, F, K Root data from CAIDA

Original paper (cont.)

- Observed server selection following customer relationships rather than geography for J and K roots
 - Transit from different providers at different nodes
 - ISPs prefer to send traffic to customers, regardless of geography

Original paper (cont.)

- Attempted to show that an anycast system being consistent about transit and peering policies avoided those issues
 - Did data collection from PCH anycast system
 - > Four global nodes, transit from NTT/Teleglobe
 - Some peering on the global nodes
 - Traffic followed geography, except when it didn't
 - Cases where it didn't were anomalous

Original paper -- questions

- Methodology issues
- > Anomalies in the data
- Local node performance

Methodology issues

- Used unique query sources (actually source /24s) instead of hit counts.
 - Did that distort results, or miss important networks?
- > Reran analysis, using hit counts, for answers:
 - > Results mostly similar.
 - Weighting by query sources did have interesting effects. Half of "Belarus" queries from one network in the US.

Local nodes

> Left out of earlier analysis:

- > Initially considered out of scope.
- > Added in later tests.
- > Results more or less as expected:
 - Isolated regions -- Nepal, Bangladesh, Kenya, mostly self-contained.
 - More major nodes -- Amsterdam, Stockholm, Singapore, drew from wider, but geographically contiguous, areas.

Data Anomalies

- Traffic anomalies, blamed on inconsistent peering:
 - Southeast Europe/North Africa to Ashburn
 - Indian sources to Ashburn
 - > Spanish sources to Hong Kong
 - Lots of Asian traffic to Palo Alto rather than Hong Kong

Chasing anomalies

Southeast Europe/North Africa
210k queries from Telecom Italia
62k queries from UPC
We peered with both in US but not Europe.
Turned up peering, and traffic shifted.

Peering shift

Ashburn, before shift

Ashburn, after shift

Amsterdam, before shift

Amsterdam, after shift

Asia to Palo Alto

- Much of Asia hotpotatoing to Palo Alto in January
- > Still doing so in March
- Going to Hong Kong in May
- Spot check shows these mostly seen through transit, so shift presumably in transit provider networks

Palo Alto, January

Hong Kong, September

New issues

Turk Telecom --- Uses circuit to Eastern US. Not much we can do in short term.
Planned node in DE-CIX might fix this.
Things that changed on their own:

No longer seeing Jazz Telecom in Hong Kong -- not sure why.
Indian traffic heading East rather than West.

Latin America

- Going to right global node. Local nodes are closer.
- Could be fixed by peering in Miami or Sao Paulo
- > Ending up in Ashburn:
 - Region-wide: 474k qpd from Telefonica.
 - Caribbean: 142k qpd from Columbus/New World
 - Brazil:
 - > 150k qpd from Bahia
 - > 80k qpd from Telefonica
 - > 80k qpd from Embratel
 - > 60k qpd from Brazil Telecom.

Conclusions

- Fixing peering issues does fix performance issues.
 - Some networks cooperate with this, while others make it difficult.
- > A global node closer to South America might be useful.

Thanks!

Paper at:

http://www.pch.net/resources/papers/anycast-performance/

Steve Gibbard Packet Clearing House www.pch.net scg@pch.net